ECE 2200/10 Lecture 1 Introduction to Electrical Engineering for non-majors

A. Stolp
12/30/11
8/24/15

2200 = 1/2 semester (Civil, Mining)
ECE 2200 Without the Physics is hard, Plan on it!
2200, Decide today when you want to take the final:

Bad option: In your last lab session, Start labs this Thursday

If you don’t take the later final you will have to start labs Thursday, this week.

2210 = Full semester (Mechanical, Chemical, Mat. Sci, etc.)
Labs start next week
2210 Final Monday, May 2, 8:00 Subject to change to 3:30, listen in class

Make sure you are registered for the right class (2200 or 2210) and that you have the right syllabus.

Bring a lab notebook and a U-card with $11 to 1st lab.
Homeworks are due by 5:00 pm in locker ________ (see map for location of lockers)
WARNING: HWs are often due on non-class days.
Problem sessions M, 9:40 ___________________ W, _______________________
(Hopefully WEB L104)

How to survive
1. Easiest way to get through school is to actually learn and retain what you are asked to learn.
 Even if you’re too busy, don’t lose your good study practices.
 What you “just get by” on today will cost you later.
 Don’t fall for the ”I’ll never need to know this” trap. Sure, much of what you learn you may not use, but you will need some of it, some day, either in the current class, future classes, or maybe sometime in your career. Don’t waste time second-guessing the curriculum, It’ll still be easier to just do your best to learn and retain what is covered.

2. Don’t fall for the ”traps”.
 Homework answers, Problem session solutions, Posted solutions, Lecture notes.

3. KEEP UP! Use calendar.

4. Make ”permanent notes” after you’ve finished a subject or section and feel that you know it.

Lecture

<table>
<thead>
<tr>
<th>Basic electrical quantities</th>
<th>Letter used</th>
<th>Units</th>
<th>Fluid Analogy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge, actually moves</td>
<td>Q</td>
<td>Coulumb (C)</td>
<td>m³</td>
</tr>
<tr>
<td>Current, like fluid flow</td>
<td>I = (\frac{Q}{sec})</td>
<td>Amp (A, mA, µA,...)</td>
<td>m³/sec</td>
</tr>
<tr>
<td>Voltage, like pressure</td>
<td>V or E</td>
<td>volt (V, mV, kV,...)</td>
<td>Pa = 1 \cdot \frac{N}{m^2}</td>
</tr>
<tr>
<td>Resistance</td>
<td>R = (\frac{V}{I})</td>
<td>Ohm (Ω, kΩ, MΩ,...)</td>
<td></td>
</tr>
<tr>
<td>Conductance</td>
<td>G = (\frac{I}{R})</td>
<td>Siemens (S, also mho, old unit)</td>
<td></td>
</tr>
<tr>
<td>Power = energy/time</td>
<td>P = V \cdot I</td>
<td>Watt (W, mW, kW, MW,...)</td>
<td>W</td>
</tr>
</tbody>
</table>

Symbols (ideal)

Node = All points connected by wire
not connected
ideal wire
assumes R = 0
connected

battery

Variable
potentiometer
Resistors

ECE 2210 Lecture 1 notes p1
KCL, Kirchhoff's Current Law

\[I_{\text{in}} = I_{\text{out}} \text{ of any point, part, or section} \]

\[\begin{align*}
I_{\text{in}} &= I_{\text{out}} \\
2m^3/s &= 2A
\end{align*} \]

\[\begin{align*}
I_{\text{in}} &= I_{\text{out}} \\
2C/s &= 2A
\end{align*} \]

Conductors vs. Nonconductors

- Massless fluid in our analogy
- No gravity effects
- No Bernoulli effects

Reasonable because:

- Electron mass is \(9.11 \times 10^{-31} \text{kg} \)
- Electron mass is \(1.6 \times 10^{-19} \text{C} \)

Negative charge flows in negative direction

KVL, Kirchhoff's Voltage Law

\[V_{\text{gains}} = V_{\text{drops}} \text{ around any loop} \]

Battery also obeys KCL

- No accumulation of charge anywhere, so it must circulate around.
- Leads to the concept of a "Circuit"