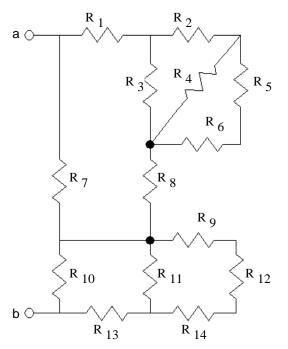

ECE 2210 Lectures 2 & 3 notes

1/28/06, 9/5/08 Ohm's law (resistors) stors) $V = I \cdot R$ $V = I \cdot R$ $R = \frac{V}{r}$ $R = \frac{V}{r}$ $V = I \cdot R$ $R = \frac{V}{r}$ $R = \frac{V}{r}$ R Power $\frac{m^3}{\sec} \qquad \text{pressure} \quad \frac{N}{m^3} \qquad \text{flow x pressure:} \quad \frac{m^3}{\sec} \cdot \frac{N}{m^2} = \frac{m}{\sec} \cdot \frac{N}{1} = \frac{N \cdot m}{\sec} = \frac{\text{Joule}}{\sec} = W = \text{power}$ flow power $P = I \cdot V$ same for electricity $P_{IN} = P_{OUT}$ $|N \qquad OUT$ - + + - - -Power dissipated by resistors: $P = V \cdot I = \frac{V^2}{R} = I^2 \cdot R$ Series Resistors

Resistors are in series if and only if exactly the same current flows through each resistor.

Parallel Resistors



Resistors are in parallel if and only if the same voltage is across each resistor.

ECE 2210 Lectures 2 & 3 notes p1

A. Stolp

Series and Parallel

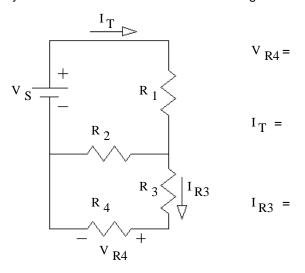
All resistor-only networks can be reduced to a single equivalent, but not always by means of series and parallel concepts.

Voltage Divider

series:
$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

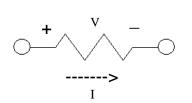
Exactly the **same current** through each resistor Voltage divider: $V_{Rn} = V_{total} \cdot \frac{R_n}{R_1 + R_2 + R_3 + \dots}$

Current Divider


parallel: R _{eq} =

 $\overline{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} + \dots$ $R_1 \qquad R_2 \qquad R_3$

Exactly the **same voltage** across each resistor current divider:


 $I_{Rn} = I_{total} \cdot \frac{\frac{1}{R_n}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots}$

May have to combine some resistors first to get series and parallel resistors to use with divider expressions.

Sources

battery

or

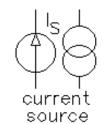
Battery

voltage sources

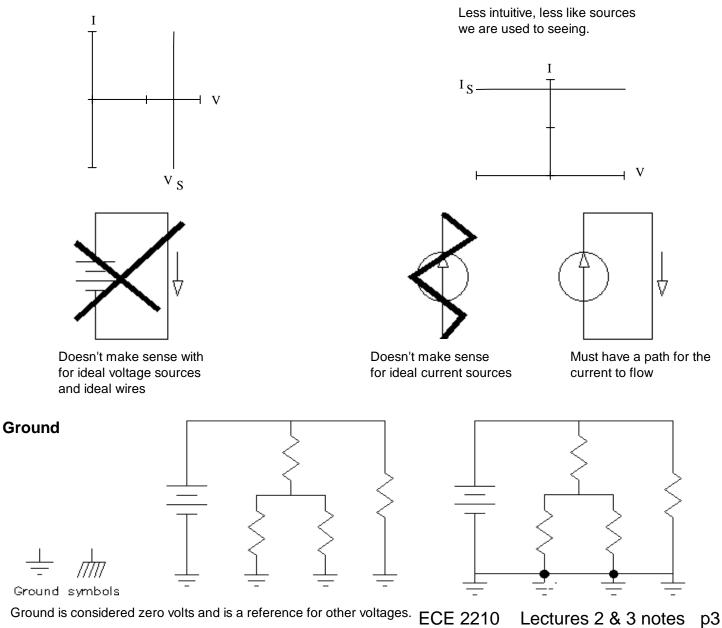
Cell

Ι

small R

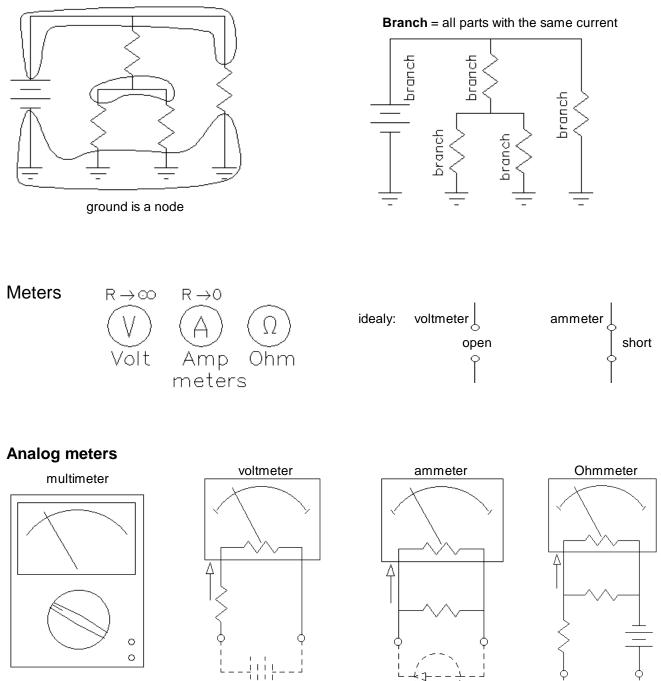

med R

-big R

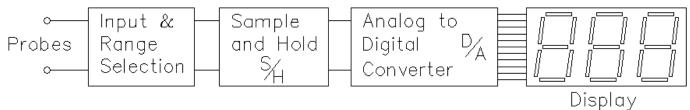

V

ECE 2210 Lectures 2 & 3 notes p3

 $R = \frac{1}{\text{slope}} = \frac{\Delta V}{\Delta I}$



Must have a path for the



Nodes & Branches

Node = all points connected by wire, all at same voltage (potential)

Digital meter

ECE 2210 Lectures 2 & 3 notes p4