ECE 2210 Lecture 4 notes Superposition

Circuits with more than one Source
Recall Statics. To find the reaction at each support, the reactions to each load on a beam (or anything else) can be found separately for each load. Simply add them up to find the total reactions.
For circuits with more than 1 source.

$$
=
$$

Superposition

1) Zero all but one source.
(To zero a voltage source, replace it with a short. To zero a current source, replace it with an open.)
2) Compute your wanted voltage or current due to the remaining source. Careful, some may be negative.
3) Repeat the first two steps for all the sources.
4) Sum all the contributions from all the sources to find the actual voltage or current. Watch your signs!

Ex1. Use the method of superposition to find the current I_{2} (through R_{2}) and the voltage across R_{1} $\left(\mathrm{V}_{\mathrm{R} 1}\right)$. Be sure to clearly show and circle your intermediate results.
superposition:

Eliminate current source

$$
\begin{array}{ll}
\mathrm{I}_{2 . \mathrm{Vs}}:=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{1}+\mathrm{R}_{2}} & \mathrm{I}_{2 . \mathrm{Vs}}=20 \cdot \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{R} 1 . \mathrm{Vs}}:=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \cdot \mathrm{~V}_{\mathrm{S}} & \mathrm{~V}_{\mathrm{R} 1 . \mathrm{Vs}}=2 \cdot \mathrm{~V}
\end{array}
$$

Eliminate voltage source

$$
\begin{array}{ll}
\mathrm{I}_{2 . \mathrm{Is}}:=-\frac{\frac{1}{\mathrm{R}_{2}}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \cdot \mathrm{I}_{\mathrm{S}}} & \mathrm{I}_{2 . \mathrm{Is}}=-6 \cdot \mathrm{~mA} \\
\mathrm{~V}_{\text {R1.Is }}:=-\mathrm{I}_{2 . \mathrm{Is}} \cdot \mathrm{R}_{2} & \mathrm{~V}_{\text {R1.Is }}=1.2 \cdot \mathrm{~V}
\end{array}
$$

Add results

$$
\begin{array}{ll}
\mathrm{I}_{2}:=\mathrm{I}_{2 . \mathrm{Vs}}+\mathrm{I}_{2 . \mathrm{Is}} & \mathrm{I}_{2}=14 \cdot \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{R} 1}:=\mathrm{V}_{\mathrm{R} 1 . \mathrm{Vs}}+\mathrm{V}_{\mathrm{R} 1 . \mathrm{Is}} & \mathrm{~V}_{\mathrm{R} 1}=3.2 \cdot \mathrm{~V}
\end{array}
$$

ECE 2210 Lecture 4 notes p2

Ex2. Use the method of superposition to find the voltage accross through R_{2} and the current through R_{3}. Be sure to clearly show and circle your intermediate results.

Eliminate current source

R_{1} is a separate path and doesn't matter.
$\mathrm{V}_{\mathrm{R} 2 . \mathrm{Vs}}:=\frac{\mathrm{R}_{2}}{\mathrm{R}_{2}+\mathrm{R}_{3}} \cdot \mathrm{~V}_{\mathrm{S}} \quad \quad \mathrm{V}_{\mathrm{R} 2 . \mathrm{Vs}}=4.8 \cdot \mathrm{~V}$
$\mathrm{I}_{\mathrm{R} 3 . \mathrm{Vs}}:=-\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{2}+\mathrm{R}_{3}} \quad \quad \mathrm{I}_{\mathrm{R} 3 . \mathrm{Vs}}=-2.4 \cdot \mathrm{~mA}$

Eliminate voltage source
R_{1} is shorted and doesn't matter.

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{R} 2 . \mathrm{Is}}:=\mathrm{I}_{\mathrm{S}} \cdot \frac{1}{\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}} & \mathrm{~V}_{\mathrm{R} 2 . \mathrm{Is}}=2.4 \cdot \mathrm{~V} \\
\mathrm{I}_{\mathrm{R} 3 . \mathrm{Is}}:=\frac{\frac{1}{\mathrm{R}_{3}}}{\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}} \cdot \mathrm{I}_{\mathrm{S}} & \mathrm{I}_{\mathrm{R} 3 . \mathrm{Is}}=0.8 \cdot \mathrm{~mA}
\end{array}
$$

Add results

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{R} 2}:=\mathrm{V}_{\mathrm{R} 2 . \mathrm{Vs}}+\mathrm{V}_{\mathrm{R} 2 . \mathrm{Is}} & \mathrm{~V}_{\mathrm{R} 2}=7.2 \cdot \mathrm{~V} \\
\mathrm{I}_{\mathrm{R} 3}:=\mathrm{I}_{\mathrm{R} 3 . \mathrm{Vs}}+\mathrm{I}_{\mathrm{R} 3 . \mathrm{Is}} & \mathrm{I}_{\mathrm{R} 3}=-1.6 \cdot \mathrm{~mA}
\end{array}
$$

