Ex 1. For the circuit shown:
a) Find the transfer function v_{L}.

$$
\begin{aligned}
\mathbf{V}_{\mathbf{L}}(\mathbf{s}) & =\frac{\frac{1}{\frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{R}}}}{\frac{1}{\frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{R}}}+\frac{1}{\mathrm{C} \cdot \mathrm{~s}}} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s}) \\
& =\frac{1}{1+\frac{1}{\mathrm{C} \cdot \mathrm{~s}} \cdot\left(\frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{R}}\right)} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s}) \\
\mathbf{H}(\mathbf{s}) & =\frac{\mathbf{V}_{\mathbf{L}}(\mathbf{s})}{\mathbf{V}_{\mathbf{S}^{(s)}}}=\frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}} \\
& =\frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}+\frac{3.788 \cdot 10^{4}}{\sec } \cdot \mathrm{~s}+\frac{9.091 \cdot 10^{9}}{\sec ^{2}}}
\end{aligned}
$$

$$
=\frac{1}{1+\frac{1}{\mathrm{C} \cdot \mathrm{~s}} \cdot\left(\frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{R}}\right)} \cdot \mathbf{v} \mathbf{S}^{(\mathbf{s})}=\frac{1}{1+\frac{1}{\mathrm{C} \cdot \mathrm{~s}} \cdot \frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{C} \cdot \mathrm{~s}} \cdot \frac{1}{\mathrm{R}}} \cdot \mathbf{v}_{\mathbf{S}}(\mathbf{s}) \quad=\frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}} \cdot \mathbf{v}_{\mathbf{S}}(\mathbf{s})
$$

$$
\mathrm{R}:=120 \cdot \Omega
$$

$$
\mathrm{C}:=0.22 \cdot \mu \mathrm{~F}
$$

$$
\mathrm{L}:=0.5 \cdot \mathrm{mH}
$$

$$
\frac{1}{\mathrm{C} \cdot \mathrm{R}}=3.788 \cdot 10^{4} \cdot \frac{1}{\sec } \quad \frac{1}{\mathrm{~L} \cdot \mathrm{C}}=9.091 \cdot 10^{9} \cdot \frac{1}{\sec ^{2}}
$$

b) Find the characteristic equation for this circuit. $\quad 0=s^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}=\mathrm{s}^{2}+\frac{3.788 \cdot 10^{4}}{\sec } \cdot \mathrm{~s}+\frac{9.091 \cdot 10^{9}}{\sec ^{2}}$ Just the denominator set to zero. The solutions of the characteristic equation are the "poles" of the transfer function.
c) Find the differential equation for v_{L}.

Cross-multiply the transfer function

$$
\begin{aligned}
\mathrm{s}^{2} \cdot \mathbf{V}_{\mathbf{S}^{(s)}} & =\left(\mathrm{s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right) \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s}) \\
\mathrm{s}^{2} \cdot \mathbf{V}_{\mathbf{S}^{(s)}} & =\mathrm{s}^{2} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s})+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{~s} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s})+\frac{1}{\mathrm{~L} \cdot \mathrm{C}} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s}) \\
\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}} \mathrm{v}^{(t)} & =\frac{\mathrm{d}^{2}}{\mathrm{dt} t^{2}} \mathrm{v}_{\mathrm{L}}(\mathrm{t})+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{L}}(\mathrm{t})+\frac{1}{\mathrm{~L} \cdot \mathrm{C}} \cdot \mathrm{v}_{\mathrm{L}}(\mathrm{t}) \\
\frac{\mathrm{d}^{2}}{\mathrm{dt} \mathrm{t}^{2}} \mathrm{v}^{(t)} & =\frac{\mathrm{d}^{2}}{\mathrm{dt} t^{2}} \mathrm{v}_{\mathrm{L}}(\mathrm{t})+\frac{3.788 \cdot 10^{4}}{\mathrm{sec}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{L}}(\mathrm{t})+\frac{9.091 \cdot 10^{9}}{\sec ^{2}} \cdot \mathrm{v}_{\mathrm{L}}(\mathrm{t})
\end{aligned}
$$

d) What are the solutions to the characteristic equation?

$$
\begin{aligned}
& s_{1}=\frac{-3.788 \cdot 10^{4}}{2}+\frac{1}{2} \cdot \sqrt{\left(3.788 \cdot 10^{4}\right)^{2}-4 \cdot\left(9.091 \cdot 10^{9}\right)}=-1.894 \cdot 10^{4}+9.345 \cdot 10^{4} \mathrm{j} \\
& \mathrm{~s}_{2}=\frac{-3.788 \cdot 10^{4}}{2}-\frac{1}{2} \cdot \sqrt{\left(3.788 \cdot 10^{4}\right)^{2}-4 \cdot\left(9.091 \cdot 10^{9}\right)}=-1.894 \cdot 10^{4}-9.345 \cdot 10^{4} \mathrm{j}
\end{aligned}
$$

e) What type of response do you expect from this circuit?

The solutions to the characteristic equation are complex so the response will be underdamped.

ヒレレ டடIU Lecture ıб notes $\mathrm{P}<$

2．Analysis of the circuit shown yields the characteristic equation below．The switch has been in the open position for a long time and is closed（as shown） at time $t=0$ ．Find the initial and final conditions and write the full expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ ，including all the constants that you find．Don＇t let the odd position of the switch throw you，just use it to find your initial conditions．
Clearly show important numbers（like initial and final conditions）to get partial credit．If you can＇t find some of these，guess so that you can move on．

$$
\mathrm{s}^{2}+10000 \cdot \frac{1}{\sec } \cdot \mathrm{~s}+2 \cdot 10^{7} \cdot \frac{1}{\sec ^{2}}=0
$$

$$
s_{1}:=\left[\frac{-10000}{2}+\frac{1}{2} \cdot \sqrt{(10000)^{2}-4 \cdot\left(2 \cdot 10^{7}\right)}\right] \cdot \sec ^{-1} \quad s_{2}:=\left[\frac{-10000}{2}-\frac{1}{2} \cdot \sqrt{(10000)^{2}-4 \cdot\left(2 \cdot 10^{7}\right)}\right] \cdot \sec ^{-1}
$$

$$
\mathrm{s}_{1}=-2764 \cdot \sec ^{-1} \quad \mathrm{~s}_{2}=-7236 \cdot \sec ^{-1} \quad \mathrm{~s}_{1} \text { and } \mathrm{s}_{2} \text { are both real and }
$$

distinct, overdamped

Find the initial conditions：
Before the switch closed，the inductor current was：$\frac{15 \cdot \mathrm{~V}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=30 \cdot \mathrm{~mA}=\mathrm{i}_{\mathrm{L}}(0)$

When the switch is opened，the new voltage across the inductor is：${ }^{\mathrm{v}} \mathrm{L} 0:={ }^{\mathrm{v}} \mathrm{C} 0$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i} \mathrm{~L}^{(0)}= & \frac{1}{\mathrm{~L}} \cdot \mathrm{v}_{\mathrm{L} 0}= \\
& \frac{1}{\mathrm{~L}} \cdot \mathrm{v}_{\mathrm{C}} 0=90 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}
\end{aligned}
$$

Find the final condition：

$$
\begin{aligned}
& { }^{\mathrm{i}} \mathrm{~L}^{(\infty)}= \\
& \frac{15 \cdot \mathrm{~V}}{\mathrm{R}_{1}}=75 \cdot \mathrm{~mA}
\end{aligned}
$$

General solution for the overdamped condition： $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}(\infty)+\mathrm{B} \cdot \mathrm{e}^{\mathrm{s}} \cdot{ }^{1 \cdot t}+\mathrm{D} \cdot \mathrm{e}^{\mathrm{s} 2{ }^{\mathrm{t}}}$ Initial conditions： $\begin{aligned} \mathrm{T}_{\mathrm{L} 0}:=\frac{15 \cdot \mathrm{~V}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\mathrm{i}_{\mathrm{L}}(\infty)+\mathrm{B}+\mathrm{D} \text { ，so } \mathrm{B}=\mathrm{i}^{\mathrm{L}} \mathrm{L}^{-} \mathrm{i}_{\mathrm{L}}(\infty)-\mathrm{D} & =30 \cdot \mathrm{~mA}-75 \cdot \mathrm{~mA}-\mathrm{D} \\ & =-45 \cdot \mathrm{~mA}-\mathrm{D}\end{aligned}$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}(0)=90 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}=\mathrm{s}_{1} \cdot \mathrm{~B}+\mathrm{s}_{2} \cdot \mathrm{D}=\mathrm{s}_{1} \cdot(-45 \cdot \mathrm{~mA}-\mathrm{D})+\mathrm{s}_{2} \cdot \mathrm{D}=\mathrm{s}_{1} \cdot(-45 \cdot \mathrm{~mA})-\mathrm{s}_{1} \cdot \mathrm{D}+\mathrm{s}_{2} \cdot \mathrm{D}
$$

solve for $D \& B: \quad D:=\frac{90 \cdot \frac{A}{\mathrm{sec}}-\mathrm{s}_{1} \cdot(-45 \cdot \mathrm{~mA})}{-\mathrm{s}_{1}+\mathrm{s}_{2}} \quad D=7.69 \cdot \mathrm{~mA} \quad B:=-45 \cdot \mathrm{~mA}-D \quad B=-52.7 \cdot \mathrm{~mA}$
Plug numbers back in：$\quad \mathrm{i}_{\mathrm{L}}(\mathrm{t}):=75 \cdot \mathrm{~mA}-52.7 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-2764 \mathrm{t}}+7.69 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-7236 \mathrm{t}}$

$$
\begin{aligned}
& \mathrm{s}^{2}+\left(\frac{1}{\mathrm{C} \cdot \mathrm{R}_{1}}\right) \cdot \mathrm{s}+\left(\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right)=0 \\
& \left(\frac{1}{\mathrm{C} \cdot \mathrm{R}_{1}}\right)=1 \cdot 10^{4} \cdot \mathrm{sec}^{-1} \quad\left(\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right)=4 \cdot 10^{9} \cdot \mathrm{sec}^{-2}
\end{aligned}
$$

ECE 2210 Lecture 18 notes p3

3. Analysis of the circuit shown yields the characteristic equation and s values below. The switch has been in the closed position for a long time and is opened (as shown) at time $t=0$. Find the initial and final conditions and write the full expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$, including all the constants.

$$
\begin{aligned}
& 0=s^{2}+\frac{R_{1}}{\mathrm{~L}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}} \\
& \mathrm{~s}_{1}:=\left(-250+10^{4} \cdot \mathrm{j}\right) \cdot \frac{1}{\mathrm{sec}}, \quad \mathrm{~s}_{2}:=\left(-250-10^{4} \cdot \mathrm{j}\right) \cdot \frac{1}{\mathrm{sec}} \\
& \text { Solution: } \quad \alpha:=-250 \cdot \frac{1}{\mathrm{sec}}
\end{aligned} \quad \omega:=10000 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} .
$$

Initial conditions:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}^{(0)}=\alpha \cdot \mathrm{B}+\mathrm{D} \cdot \omega
$$

$$
\mathrm{D}:=\frac{8 \cdot 10^{5} \cdot \frac{\mathrm{~V}}{\sec }-\alpha \cdot \mathrm{B}}{\omega} \quad \mathrm{D}=79.9 \cdot \mathrm{~V}
$$

Write the full expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$, including all the constants that you find.

$$
{ }^{v} C^{(t)}=e^{\alpha \cdot t} \cdot(B \cdot \cos (\omega \cdot t)+D \cdot \sin (\omega \cdot t))+{ }^{v} C^{(\infty)}
$$

$$
{ }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t})}:=\mathrm{e}^{-250 \mathrm{t}} \cdot\left(-4 \cdot \mathrm{~V} \cdot \cos \left(10^{4} \cdot \mathrm{t}\right)+79 \cdot 9 \cdot \mathrm{~V} \cdot \sin \left(10^{4} \cdot \mathrm{t}\right)\right)+10 \cdot \mathrm{~V}
$$

ECE 2210 Lecture 18 notes p4

4. Analysis of a circuit (not pictured) yields the characteristic equation below.
$0=s^{2}+400 \cdot s+400000$
$\mathrm{R}:=80 \cdot \Omega$
$\mathrm{L}:=20 \cdot \mathrm{mH}$
$\mathrm{C}:=2 \cdot \mu \mathrm{~F}$

Further analysis yields the followiing initial and final conditions:
$\mathrm{i}_{\mathrm{L}}(0)=120 \cdot \mathrm{~mA}$
$v_{L}(0)=-3 \cdot V$
${ }^{v} C^{(0)}=7 \cdot \mathrm{~V} \quad \mathrm{i}_{\mathrm{C}}(0)=-80 \cdot \mathrm{~mA}$
${ }^{\mathrm{i}} \mathrm{L}^{(\infty)}=800 \cdot \mathrm{~mA} \quad{ }^{\mathrm{v}} \mathrm{L}^{(\infty)}=0 \cdot \mathrm{~V}$
${ }^{\mathrm{v}} \mathrm{C}^{(\infty)}=12 \cdot \mathrm{~V} \quad \mathrm{i}_{\mathrm{C}}(\infty)=0 \cdot \mathrm{~mA}$

Write the full expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, including all the constants that you find. $\quad \mathrm{i}_{\mathrm{L}}(\mathrm{t})=$?
Solution: $\quad \frac{400}{2}=200 \quad \frac{\sqrt{400^{2}-4 \cdot 400000}}{2}=600 j$
$\mathrm{s}_{1}:=(-200+600 \cdot \mathrm{j}) \cdot \frac{1}{\sec } \quad$ and $\quad \mathrm{s}_{2}:=(-200-600 \cdot \mathrm{j}) \cdot \frac{1}{\sec }$
$\alpha:=\operatorname{Re}\left(\mathrm{s}_{1}\right) \quad \alpha=-200 \cdot \sec ^{-1}$
$\omega:=\operatorname{Im}\left(\mathrm{s}_{1}\right) \quad \omega=600 \cdot \sec ^{-1}$

Initial slope: $\quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}^{2}(0)=\frac{{ }^{\mathrm{v}} \mathrm{L}^{(0)}}{\mathrm{L}}=\frac{-3 \cdot \mathrm{~V}}{\mathrm{~L}}=-150 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}$
General solution for the underdamped condition: $\mathrm{i}_{\mathrm{L}}(\mathrm{t})={ }^{\mathrm{i}} \mathrm{L}^{(\infty)}+\mathrm{e}^{\alpha \cdot \mathrm{t}} \cdot(\mathrm{B} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{D} \cdot \sin (\omega \cdot \mathrm{t}))$
Find constants: $\quad{ }^{\mathrm{i}} \mathrm{L}^{(0)}={ }^{\mathrm{i}} \mathrm{L}^{(\infty)+B}$
$B=\mathrm{i}^{(0)-\mathrm{i}} \mathrm{L}^{(\infty)}$
B : $=120 \cdot \mathrm{~mA}-800 \cdot \mathrm{~mA}$
$\mathrm{B}=-680 \cdot \mathrm{~mA}$
$\frac{d}{d t} \mathrm{i}_{\mathrm{L}}(0)=\alpha \cdot B+D \cdot \omega$
$D:=\frac{-150 \cdot \frac{\mathrm{~A}}{\sec }-\alpha \cdot \mathrm{B}}{\omega}$
$\mathrm{D}=-476.667 \cdot \mathrm{~mA}$

Write the full expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, including all the constants that you find.

$$
{ }^{\mathrm{i}} \mathrm{~L}^{(\mathrm{t})}:=800 \cdot \mathrm{~mA}+\mathrm{e}^{-200 \cdot \mathrm{t}} \cdot(-680 \cdot \mathrm{~mA} \cdot \cos (600 \cdot \mathrm{t})-477 \cdot \mathrm{~mA} \cdot \sin (600 \cdot \mathrm{t}))
$$

