ECE 2210 Lecture 19 notes Second order Transient example & Systems

Ex 1. The switch at right has been in the open position for a long time and is closed (as shown) at time t = 0.

a) What are the final conditions of i_L and the v_C ?

b) Find the initial condition and initial slope of i_L so that you could find all the constants in $i_L(t)$. Don't find $i_{I}(t)$ or it's constants, just the initial conditions.

Just after the switch closes:

$$V_{S} = 24 \cdot V$$

$$R_{2} = 80 \cdot \Omega$$

$$R_{2} = 80 \cdot \Omega$$

$$R_{2} = 80 \cdot \Omega$$

$$V_{L}(0) = 24 \cdot V - 6 \cdot V = 18 \cdot V$$

$$\frac{d}{di} i_{L}(0) = \frac{18 \cdot V}{L} = 36000 \cdot \frac{A}{sec}$$

$$\frac{6 \cdot V}{40 \cdot \Omega} = 150 \cdot mA$$

$$V_{L}(0) = 150 \cdot mA + \frac{18 \cdot V}{R_{2}} - \frac{6 \cdot V}{R_{3}} = 225 \cdot mA$$

$$R_{3} = 40 \cdot \Omega$$

$$R_{3} = 40 \cdot \Omega$$

c) Find the initial condition and initial slope of $v_{\rm C}$ so that you could find all the constants in $v_{\rm C}(t)$. Don't find $v_{C}(t)$ or it's constants, just the initial conditions.

$$v_{C}(0) = V_{S} \cdot \frac{R_{3}}{R_{1} + R_{3}} = 6 \cdot V$$
 $\frac{d}{di} v_{C}(0) = \frac{225 \cdot mA}{C} = 150000 \cdot \frac{V}{sec}$

ECE 2210 Lecture 19 notes p1

Systems

Now that we' ve developed the concept of the transfer function, we can now develop system block diagrams using blocks which contain transfer functions.

Consider a circuit:

This could be represented in as a block operator:

0-

$$\mathbf{V}_{\mathbf{in}}(s)$$
 \longrightarrow $\frac{\mathbf{L}_2 \cdot \mathbf{s} + \mathbf{R}}{(\mathbf{L}_1 + \mathbf{L}_2) \cdot \mathbf{s} + \mathbf{R}}$ \longrightarrow $\mathbf{V}_{\mathbf{0}}(s) = \mathbf{V}_{\mathbf{in}}(s) \cdot \mathbf{H}(s)$

Transfer functions can be written for all kinds of devices and systems, not just electric circuits and the input and output do not have to be similar. For instance, the potentiometers used to measure angular position in the lab servo can be represented like this:

$$\boldsymbol{\theta}_{in}(s) \longrightarrow Kp = 0.7 \cdot \frac{V}{rad} = 0.012 \cdot \frac{V}{deg} \longrightarrow V_{out}(s) = K_p \cdot \boldsymbol{\theta}_{in}(s)$$

In general:

$$\mathbf{H}(s) = \frac{\mathbf{X}_{out}(s)}{\mathbf{X}_{in}(s)} \qquad \qquad \mathbf{X}_{in}(s) \longrightarrow \qquad \mathbf{H}(s) \qquad \implies \mathbf{X}_{out}(s) = \mathbf{X}_{in}(s) \cdot \mathbf{H}(s)$$

 X_{in} and X_{out} could be anything from small electrical signals to powerful mechanical motions or forces.

Two blocks with transfer functions A(s) and B(s) in a row would look like this:

ECE 2210 Lecture 19 notes p3

Summer blocks can be used to add signals:

OR

or subtract signals:

A feedback loop system is particularly interesting and useful:

The entire loop can be replaced by a single equivalent block:

Note that I' ve begun to drop the (s)

 $A(s) \cdot B(s)$ is called the "loop gain" or "open loop gain"

ECE 2210 Lecture 19 notes p4

Negative feedback is more common and is used as a control system:

This is called a "closed loop" system, whereas a a system without feedback is called "open loop". The term "open loop" is often used to describe a system that is out of control.

The servo used in our lab can be represented by:

Motor Position Potentiometer

$$\mathbf{H}(s) = \frac{\boldsymbol{\theta}_{out}(s)}{\boldsymbol{\theta}_{in}(s)} = \frac{\mathbf{G} \cdot \mathbf{K}_{T} \cdot \mathbf{K}_{p}}{\mathbf{s} \cdot \left[\mathbf{J} \cdot \mathbf{L}_{a} \cdot \mathbf{s}^{2} + \left(\mathbf{J} \cdot \mathbf{R}_{a} + \mathbf{B}_{m} \cdot \mathbf{L}_{a} \right) \cdot \mathbf{s} + \left(\mathbf{B}_{m} \cdot \mathbf{R}_{a} + \mathbf{K}_{T} \cdot \mathbf{K}_{V} \right) \right] + \mathbf{K}_{p} \cdot \mathbf{G} \cdot \mathbf{K}_{T}}$$

See the appendix to lab 9 for the complete analysis

ECE 2210 Lecture 19 notes p4