Ex. 1 R \& L together are the load. Find the real power P, the reactive power Q , the complex power \mathbf{S}, the apparent power $|\mathbf{S}|$, \& the power factor pf. Draw phasor diagram for the power.

OR, since we know that the voltage across each element of the load is $\mathrm{V}_{\text {in }} \ldots$
Real power is dissipated only by resistors

$$
\begin{array}{ll}
\mathrm{P}:=\frac{\left(\left|\mathbf{V}_{\text {in }}\right|\right)^{2}}{\mathrm{R}} \quad \mathrm{P}=1.21 \cdot \mathrm{~kW} & \mathrm{Q}:=\frac{\left(\left|\mathbf{V}_{\mathbf{i n}}\right|\right)^{2}}{\omega \cdot \mathrm{~L}} \quad \mathrm{Q} \\
\mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} & \mathrm{pf}=\frac{\mathrm{P}}{|\mathbf{S}|}=0.686 \\
\mathrm{~S}=|\mathbf{S}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=1.764 \cdot \mathrm{kVA} &
\end{array}
$$

$$
\mathrm{Q}=1.284 \cdot \mathrm{kVAR}
$$

What value of C in parallel with $\mathrm{R} \& \mathrm{~L}$ would make $\mathrm{pf}=1 \quad(\mathrm{Q}=0) ?$

$$
\mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q}=\frac{(110 \cdot \mathrm{~V})^{2}}{\mathrm{X}_{\mathrm{C}}}
$$

$$
X_{C}:=\frac{(110 \cdot V)^{2}}{-Q}
$$

$$
\mathrm{X}_{\mathrm{C}}=-9.425 \cdot \Omega
$$

$$
\frac{1}{\left|\mathrm{X}_{\mathrm{C}}\right| \cdot \omega}=281 \cdot \mu \mathrm{~F} \quad \text { OR.. } \quad \mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q}=(110 \cdot \mathrm{~V})^{2} \cdot \omega \cdot \mathrm{C} \quad \mathrm{C}=\frac{-\mathrm{Q}}{(110 \cdot \mathrm{~V})^{2} \cdot \omega}=-281.434 \cdot \mu \mathrm{~F}
$$

Ex. 2 R \& L together are the load. Find the real power P , the reactive power Q , the complex power \mathbf{S}, the apparent power $|\mathbf{S}|$, \& the power factor pf. Draw phasor diagram for the power.

$\mathrm{R}:=10 \cdot \Omega$ load
$\mathrm{L}:=25 \cdot \mathrm{mH}$
$\mathbf{I}=5.825-5.49 \mathrm{j} \cdot \mathrm{A}$
$|\mathbf{I}|=8.005 \cdot \mathrm{~A}$

$$
\arg (\mathbf{I})=-43.304 \cdot \mathrm{deg}
$$

$\mathbf{P}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \mathrm{pf}$
$\mathrm{P}=0.641 \cdot \mathrm{~kW}$
$\mathrm{Q}:=\left|\mathbf{V}_{\mathbf{i n}}\right| \cdot|\mathbf{I}| \cdot \sin (\theta)$
$\mathrm{Q}=0.604 \cdot \mathrm{kVAR}$
$\mathbf{S}:=\mathbf{V}_{\mathbf{i n}} \cdot \mathbf{I}$
$\mathbf{S}=0.641+0.604 \mathrm{j} \cdot \mathrm{kVA}$
$|\mathbf{S}|=0.881 \cdot \mathrm{kVA}$
$\arg (\mathbf{S})=43.304 \cdot \operatorname{deg}$

$$
\mathbf{S}=881 \mathrm{VA} / \underline{43.3}^{\circ}
$$

ECE 2210 AC Power Examples,

ECE 2210 AC Power Examples, p. 2

OR, if we first find the magnitude of the current which flows through each element of the load...

$$
\begin{aligned}
& |\mathbf{I}|=\frac{\mathbf{V}_{\text {in }}}{\sqrt{\mathrm{R}^{2}+(\omega \cdot \mathrm{L})^{2}}}=8.005 \cdot \mathrm{~A} \\
& \mathrm{P}:=(|\mathbf{I}|)^{2} \cdot \mathrm{R} \quad \mathrm{P}=0.641 \cdot \mathrm{~kW} \\
& \mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} \quad \mathrm{Q}:=(|\mathbf{I}|)^{2} \cdot(\omega \cdot \mathrm{~L}) \quad \mathrm{Q}=0.604 \cdot \mathrm{kVAR}
\end{aligned}
$$

What value of C in parallel with R \& L would make $\mathrm{pf}=1 \quad(\mathrm{Q}=0)$?

$$
\begin{aligned}
& \text { Vhat value of } \mathrm{C} \text { in parallel with } \mathrm{R} \& \mathrm{~L} \text { would make pf }=1 \quad(\mathrm{Q}=0) ? \\
& \mathrm{Q}=603.9 \cdot \mathrm{VAR} \quad \text { so we need: } \quad \mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{C}}=-603.9 \cdot \mathrm{VAR}=\frac{\mathrm{V}_{\mathrm{in}}{ }^{2}}{\mathrm{X}_{\mathrm{C}}} \\
& \mathrm{X}_{\mathrm{C}}:=\frac{\mathbf{V}_{\text {in }}{ }^{2}}{\mathrm{Q}_{\mathrm{C}}} \quad \mathrm{X}_{\mathrm{C}}=-20.035 \cdot \Omega \quad=\frac{-1}{\omega \cdot \mathrm{C}} \quad \mathrm{C}:=\frac{1}{\left|\mathrm{X}_{\mathrm{C}}\right| \cdot \omega} \quad \mathrm{C}=132 \cdot \mu \mathrm{~F}
\end{aligned}
$$

Check:

$$
\frac{1}{\frac{1}{R+j \cdot \omega \cdot L}+j \cdot \omega \cdot C}=18.883 \cdot \Omega \quad \text { No } j \text { term, so } \theta=0^{\circ}
$$

Ex. 3 R , \& C together are the load in the circuit shown. The RMS voltmeter measures 240 V , the RMS ammeter measures 3 A , and the wattmeter measures 600 W . Find the following: Be sure to show the correct units for each value.
a) The value of the load resistor. $R_{L}=$?

$$
\begin{aligned}
& \mathrm{P}=\mathrm{I}^{2} \cdot \mathrm{R}_{\mathrm{L}} \\
& \mathrm{R}_{\mathrm{L}}:=\frac{\mathrm{P}}{\mathrm{I}^{2}} \quad \mathrm{R}_{\mathrm{L}}=66.7 \cdot \Omega
\end{aligned}
$$

b) The apparent power. $|\mathbf{S}|=$? $\quad \mathrm{S}:=\mathrm{V}_{\mathrm{S}} \cdot \mathrm{I}$
$S=720 \cdot V A$
c) The reactive power. $\mathrm{Q}=$ = ?
$\mathrm{Q}:=-\sqrt{S^{2}-\mathrm{P}^{2}}$
$\mathrm{Q}=-398 \cdot \mathrm{VAR}$
d) The complex power. $\mathbf{S}=$?
$\mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q}$
$\mathbf{S}=600-398 \mathrm{i} \cdot \mathrm{VA}$
e) The power factor. $\mathrm{pf}=? \quad \mathrm{pf}:=\frac{\mathrm{P}}{\mathrm{V}_{\mathrm{S}} \cdot \mathrm{I}}$
$\mathrm{pf}=0.833$
f) The power factor is leading or lagging? leading (load is capacitive, Q is negative)
g) The two components of the load are in a box which cannot be opened. Add (draw it) another component to the circuit above which can correct the power factor (make pf =1). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

Add an inductor in parallel with load

$$
\mathrm{f}=60 \cdot \mathrm{~Hz} \quad \omega:=2 \cdot \pi \cdot \mathrm{f} \quad \omega=376.991 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
$$

$\mathrm{Q}=-398 \cdot \mathrm{VAR} \quad$ so we need: $\quad \mathrm{Q}_{\mathrm{L}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{L}}=398 \cdot \mathrm{VAR} \quad=\frac{\mathrm{V}_{\mathrm{s}}{ }^{2}}{\mathrm{X}_{\mathrm{L}}}$

$$
\mathrm{X}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\mathrm{Q}_{\mathrm{L}}} \quad \mathrm{X}_{\mathrm{L}}=144.725 \cdot \Omega=\omega \cdot \mathrm{L}
$$

$\mathrm{L}:=\frac{\left|\mathrm{X}_{\mathrm{L}}\right|}{\omega}$
$\mathrm{L}=384 \cdot \mathrm{mH}$

Ex. 4 For the 60 Hz load shown in the figure, the RMS voltmeter measures 120 V . The phasor diagram for the power is also shown. Find the following:
a) The complex power. $\mathbf{S}=$?

$$
\begin{array}{lc}
\mathbf{P}:=300 \cdot \mathrm{~W} & \mathrm{Q}:=-150 \cdot \mathrm{VA} \\
\mathbf{S}:=\mathrm{P}+\mathrm{j} \cdot \mathrm{Q} & \mathbf{S}=300-150 \mathrm{j} \cdot \mathrm{VA}
\end{array}
$$

$\omega:=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
b) The apparent power. $|\mathbf{S}|=? \quad|\mathbf{S}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=335.4 \cdot \mathrm{VA}$
c) The power factor. $\mathrm{pf}=$? $\quad \mathrm{pf}:=\frac{\mathrm{P}}{|\mathbf{S}|} \quad \mathrm{pf}=0.894$
d) The item marked "WM" in the figure is a wattmeter, what does it read? (give a number)

$$
\mathrm{P}=300 \cdot \mathrm{~W}
$$

e) The item marked " A " in the figure is an RMS ammeter, what does it read? (give a number)

$$
\mathrm{I}:=\frac{|\mathbf{S}|}{\mathrm{V}} \quad \mathrm{I}=2.795 \cdot \mathrm{~A} \quad \mathrm{I}=2.8 \cdot \mathrm{~A}
$$

f) The power factor is leading or lagging? leading (Q is negative)
g) The 3 components of the load are in a box which cannot be opened. Add another component to the circuit above which can correct the power factor (make $\mathrm{pf}=1$). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

$$
\begin{aligned}
& \text { Add an inductor in parallel with load } \\
& \mathrm{Q}=-150 \cdot \mathrm{VAR} \quad \text { need: } \quad \mathrm{Q}_{\mathrm{L}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{L}}=150 \cdot \mathrm{VAR} \quad=\frac{\mathrm{V}_{\mathrm{s}}{ }^{2}}{\omega \cdot \mathrm{~L}} \quad \mathrm{~L}:=\frac{\mathrm{V}_{\mathrm{s}}{ }^{2}}{\omega \cdot \mathrm{Q}_{\mathrm{L}}} \quad \mathrm{~L}=255 \cdot \mathrm{mH}
\end{aligned}
$$

Ex. 5 R, L, \& C together are the load in the circuit shown
The RMS voltmeter measures $120 \mathrm{~V} . \mathrm{V}_{\mathrm{s}}:=120 \cdot \mathrm{~V}$
The wattmeter measures $270 \mathrm{~W} . \quad \mathrm{P}:=270 \cdot \mathrm{~W}$
The RMS ammeter measures $3.75 \mathrm{~A} . \mathrm{I}:=3.75 \cdot \mathrm{~A}$

Find the following: Be sure to show the correct units for each value.
a) The value of the load resistor. $R_{L}=$?

b) The magnitude of the impedance of the load inductor (reactance). $\left|\mathbf{Z}_{\mathbf{L}}\right|=X_{L}=$?

$$
\mathrm{I}_{\mathrm{R}}:=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{L}}} \quad \mathrm{I}_{\mathrm{R}}=2.25 \cdot \mathrm{~A} \quad \mathrm{I}_{\mathrm{L}}:=\sqrt{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{R}}{ }^{2}} \quad \mathrm{I}_{\mathrm{L}}=3 \cdot \mathrm{~A} \quad \mathrm{X}:=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{L}}} \quad \mathrm{X}=40 \cdot \Omega
$$

OR: $\mathrm{S}:=\mathrm{V}_{\mathrm{S}} \cdot \mathrm{I} \quad \mathrm{S}=450 \cdot \mathrm{VA}$
$\mathrm{Q}:=\sqrt{\mathrm{S}^{2}-\mathrm{P}^{2}} \quad \mathrm{Q}=360 \cdot \mathrm{VAR}=\frac{\mathrm{V}_{\mathrm{s}}{ }^{2}}{\mathrm{X}}$
$X=\frac{V_{s}{ }^{2}}{Q}=40 \cdot \Omega$ either way: $\quad X_{C}:=-10 \cdot \Omega$
$X_{L}:=X-X_{C} \quad X_{L}=50 \cdot \Omega$
c) The reactive power. $\mathrm{Q}=? \quad \mathrm{Q}:=\sqrt{\left(\mathrm{V}_{\mathrm{s}} \cdot \mathrm{I}\right)^{2}-\mathrm{P}^{2}} \quad \mathrm{Q}=360 \cdot \mathrm{VAR} \quad$ positive, because the load
d) The power factor is leading or lagging? lagging (load is inductive, Q is positive)

ECE 2210 AC Power Examples, p. 4

e) The 3 components of the load are in a box which cannot be opened. Add another component to the circuit above which can correct the power factor (make pf $=1$). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.

Add a capacitor in parallel with load

$$
\mathrm{f}=60 \cdot \mathrm{~Hz} \quad \omega:=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
$$

$$
\begin{aligned}
\mathrm{Q}=360 \cdot \mathrm{VAR} \quad \text { so we need: } \quad \mathrm{Q}_{\mathrm{C}}:=-\mathrm{Q} \quad \mathrm{Q}_{\mathrm{C}}=-360 \cdot \mathrm{VAR} \quad=-\frac{\mathrm{V}_{\mathrm{s}}^{2}}{\frac{1}{\omega \cdot \mathrm{C}}}=-\omega \cdot \mathrm{C} \cdot \mathrm{~V}_{\mathrm{s}}^{2} \\
\mathrm{C}:=\frac{\mathrm{Q}_{\mathrm{C}}}{-\omega \cdot \mathrm{V}_{\mathrm{s}}^{2}} \quad \mathrm{C}=66.3 \cdot \mu \mathrm{~F}
\end{aligned}
$$

Ex. 6 A step-down transformer has an output voltage of 220 V (rms) when the primary is connected across a 560 V (rms) source.
a) If there are 280 turns on the primary winding, how many turns are required on the secondary?

$$
\begin{aligned}
& 280 \cdot \frac{220 \cdot \mathrm{volt}}{560 \cdot \mathrm{volt}}=110 \mathrm{turns} \\
& 2.4 \cdot \mathrm{amp} \cdot \frac{280}{110}=6.11 \cdot \mathrm{~A}
\end{aligned}
$$

b) If the current in the primary is 2.4 A , what current flows in the load connected to the secondary?
c) If the transformer is rated at $700 / 275 \mathrm{~V}, 2.1 \mathrm{kVA}$,
what are the rated primary and secondary currents? \quad pri: $\quad \frac{2.1 \cdot \mathrm{kVA}}{700 \cdot \mathrm{~V}}=3 \cdot \mathrm{~A} \quad \mathrm{sec}: \quad \frac{2.1 \cdot \mathrm{kVA}}{275 \cdot \mathrm{~V}}=7.636 \cdot \mathrm{~A}$

Ex. 7 The transformer shown in the circuit below is ideal. Find the following:
a) $\left|\mathbf{I}_{1}\right|=$?

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}:=120 \cdot \mathrm{~V} \\
& \omega:=377 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$

Make an
equivalent circuit:

$$
\begin{aligned}
& \underbrace{\mathrm{R}_{1}}_{V_{\mathrm{s}}} \underbrace{:=20 \cdot \Omega}_{\mathrm{V}_{1}} \quad \mathbf{Z}_{\mathbf{L}}=14.27-3.228 \mathrm{j} \cdot \Omega \\
& \mathrm{R}_{1}+\mathbf{Z}_{\mathbf{e q}}=148.429-29.051 \mathrm{j} \cdot \Omega \quad \mathbf{Z}_{\mathbf{e q}}:=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \cdot \mathbf{Z}_{\mathbf{L}} \quad \mathbf{Z}_{\mathbf{e q}}=128.429-29.051 \mathrm{j} \cdot \Omega \\
& \left|\mathbf{I}_{\mathbf{1}}\right|=\frac{\mathrm{V}_{\mathrm{s}}}{\left|\mathrm{R}_{1}+\mathbf{Z}_{\mathbf{e q}}\right|}=\frac{\mathrm{V}_{\mathrm{s}}}{151.245 \cdot \Omega}=0.793 \cdot \mathrm{~A}
\end{aligned}
$$

b) $\left|\mathbf{I}_{\mathbf{2}}\right|=?=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right) \cdot\left|\mathbf{I}_{\mathbf{1}}\right|=\frac{150}{50} \cdot .793 \cdot \mathrm{~A}=2.379 \cdot \mathrm{~A}$
c) $\left|\mathbf{V}_{\mathbf{1}}\right|=?=V_{s} \cdot\left|\frac{\mathbf{Z}_{\mathbf{e q}}}{\mathrm{R}_{1}+\mathbf{Z}_{\mathbf{e q}}}\right|$

OR.. $\left|\mathbf{V}_{\mathbf{1}}\right|=\left|\mathbf{I}_{\mathbf{1}}\right| \cdot\left|\mathbf{Z}_{\mathbf{e q}}\right|=.793 \cdot \mathrm{~A} \cdot \sqrt{128.429^{2}+29.051^{2}} \cdot \Omega=104.417 \cdot \mathrm{~V}$

