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ECE 2210 Frequency Response, Filters  &  Bode Plots
Frequency Response

In the Capacitors lab you made a "frequency dependent voltage divider" whose output was not the same for all 
frequencies of input.  You made a graph of the output voltage as a function of the input frequency.  That was a 
frequency response graph of the circuit.  You made similar graphs in the Resonance lab.  These graphs help show the 
relationship of the output to the input as a function of frequency.  This relationship is known as the frequency response 
of the circuit.  You may have heard the term used before in connection with speakers or microphones.  All electrical and 
mechanical systems have frequency response characteristics.  Sometimes the frequency response can be quite 
dramatic, like the Tacoma Narrows bridge.

Filter Circuits
A circuit which passes some frequencies and filters out other frequencies is called (surprise, surprise) a "filter" and this 
selection and rejection of frequencies is called "filtering".  The tone or equalization controls on your stereo are frequency 
filters.  So are the tuners in TVs and radios.

If a filter passes high frequencies and rejects low frequencies, then it is a high-pass filter.  Conversely, if it passes low 
frequencies and rejects high ones, it is a low-pass filter.  A filter that passes a range or band of frequencies and rejects 
frequencies lower or higher than that band, is a band-pass filter.  The opposite of this is a band-rejection filter, or if the 
band is narrow, a notch filter or trap.

Look at the circuit at right.  At low frequencies the impedance of the inductor is 
low and the output voltage is essentially shorted to ground.  At high frequencies 
the impedance of the inductor is high and the output is about the same as the 
input.  This is a high-pass filter.  We can determine the relationship between 
the input and output:
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A transfer function is a general term used for any linear system that has an input and an output.  It is simply the ratio 
of output to input.  The idea is that if you multiply the input by the transfer function, you get the output.

output is proportional 
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Naturally, a plot of the transfer function verses frequency would be a handy thing.  You've already made similar plots in 
the lab.  It turns out that these plots are best done on a log-log scale.  Unfortunately, they are actually plotted on a 
semilog scale using a special unit in the vertical axis called the decibel  (dB) and the log is built into this dB unit.  The 
dB unit doesn't really simplify things, but it is widely used and you'll need to know about it, so here goes.

Decibels
Your ears respond to sound logarithmically, both in frequency and in intensity.
Musical octaves are in ratios of two.  "A" in the middle octave is 220 Hz, in the next, 440 Hz,  then 880 Hz, etc...
It takes about ten times as much power for you to sense one sound as twice as loud as another.

10x power ~ 2x loudness
A bel is such a 
10x ratio of power. The bel is named for Alexander Graham 

Bell, who did original research in hearing.Power ratio expressed in bels  = log
P 2

P 1
bels

It is a logarithmic expression of a unitless ratio (like the magnitude of H(ω) or gain of an amplifier).

The bel unit is never actually used, instead we use the decibel (dB, 1/10th of a bel).

Power ratio expressed in dB  = .10 log
P 2

P 1
dB
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dB are also used to express voltage and current ratios, which is related to power when squared. P =

V2

R
= .I2 R

Voltage ratio expressed in dB  = .10 log
V 2

2

V 1
2

dB = .20 log
V 2

V 1
dB

These are the most 
common formulas used 
for dBCurrent ratio expressed in dB  = .20 log

I 2

I 1
dB

Some common ratios expressed as dB

=.20 log
1

2
3.01 dB =10

3
20 0.708 =.20 log 2 3.01 dB =10

.3 dB
20 1.413

=.20 log
1

2
6.021 dB =10

6
20 0.501 =.20 log( )2 6.021 dB =10

.6 dB
20 1.995

=.20 log
1

10
20 dB =10

20
20 0.1 =.20 log( )10 20 dB =10

.20 dB
20 10

=.20 log
1

100
40 dB =10

40
20 0.01 =.20 log( )100 40 dB =10

.40 dB
20 100

Other dB-based units
You may have encountered dB as an absolute measure of sound intensity (Sound Pressure Level or SPL).  In that 
case the RMS sound pressure is compared as a ratio to a reference of 2 x 10-5 Pascals.

dBm is another absolute power scale expressed in dB.  Powers are referenced to 1mW. 

Volume Units (VU) are dBm with the added spec that the load resistor is 600Ω. 

Bode Plots
Named after Hendrik W. Bode (bo-dee), bode plots are just frequency response curves made on semilog paper where 
the  horizontal axis is frequency on a log10 scale and the vertical axis is either dB or phase angle.  The plots are 
nothing special, but the method that Bode came up with to make them quickly and easily is special.  We aren't going 
to bother with the phase-angle plots in this class, but since the bode method of making frequency plots is so simple it's 
worth our time to see how it's done.  

Basically, these are the steps:
1. Find the transfer function.
2. Analyze the transfer function to find "corner frequencies" and use these to divide the frequency into ranges.
3. Simplify and approximate the magnitude of the transfer function in each of these ranges.
4. Draw a "straight-line approximation" of the frequency response curve.
5. Use a few memorized facts to draw the actual frequency response curve. 

The best way to learn the method is by examples.

Ex. 1
V out
V in

=

1
..j ω C

1
..j ω C

R

=
1

1 .R ( )..j ω C
= H( )ω = The "Transfer Function"

R .100 kΩ
C ..04 µF

corner frequency is where real = imaginary (in denominator in this case)

1 = ..ω c R C ω c
1
.R C

=ω c 250
rad

sec
So... H( )ω 1

1 .j
ω

.250
rad

sec
ωc is also called a "pole" frequency

The transfer function is said to have one "pole" at ωc
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To make a straight-line approximation of the magnitude of H(ω) we'll approximate |H(ω)| in two regions, one below the 
corner frequency, and one above the corner frequency.  Keep only the real or only the imaginary part of the denominator, 
depending on which is greater.

below the corner frequency: ω < ω c H( )ω ~
1

1
H( )ω ~ 1 =.20 log( )1 0 dB

above the corner frequency: ω > ω c H( )ω ~
1

.j
ω

.250
rad

sec

H( )ω ~ .1

ω
.250
rad

sec
inversely 
proportional to ω. 

Inverse proportionality is a straight 1 to 1 down slope on a log-log plot, with dB it's a only slightly different.  Since 10x 
corresponds to 20 dB, the line goes down 20 dB for every 10x increase in frequency (called a decade).

That's all you need to make the straight-line approximation shown in the plot below. (If you know the slope)

Try some values above 
   the corner frequency: =.20 log .1

.10 ω c

.250
rad

sec
20 dB =.20 log .1

.100 ω c

.250
rad

sec
40 dB

The slope above the corner frequency is -20 dB per "decade".
A decade is a 10x increase in frequency.  
This slope is also -6dB per "octave" (a 2x increase in frequency).

Let's find the actual magnitude of H(ω) 
  right at the corner frequency (H(ωc)): ω = ω c H( )ω =

1

1 .j
ω c

.250
rad

sec

=
1

1 .j 1

H( )ω =
1

2
=.20 log

1

2
3.01 dB
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Ex. 2

C .0.2 µF V R
V S

= .50
R

1
..j ω C

R

=
.50 ( ).R ( )..j ω C

1 .R ( )..j ω C
= H( )ω

Transfer function 
has one pole at ωcR .10 kΩ

corner frequency is where real = imaginary

1 = ..ω c R C ω c
1
.R C

=ω c 500
rad

sec

So... H( )ω

..50 j
ω

.500
rad

sec

1 .j
ω

.500
rad

sec

=
..50 j ω

.500
rad

sec
.j ω

OR: H( )ω

..50 j
ω

ω c

1 .j
ω

ω c

ω < ω c H( )ω ~

..50 j
ω

.500
rad

sec

1
=

...0.1
sec

rad
j ω

1
H( )ω ~ ..0.1

sec

rad
ω

Proportional to ω.  That's all we need to know here.  This 
proportionality to ω will result in a +20 dB per decade 
slope for all frequencies below the corner frequency

ω > ω c H( )ω ~

..50 j
ω

.500
rad

sec

.j
ω

.500
rad

sec

H( )ω ~ 50 =.20 log( )50 33.98 dB The "pass band" 

Actual value at the corner frequency

ω = ω c H( )ω =
..50 j ω

.500
rad

sec
.j ω

= =
.50 j

1 .j 1
25 +25j =25 .25 j 35.355 =.20 log( )35.355 30.97 dB

3 dB lower than the 
magnitude in the pass band
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Ex. 3 The transfer function may already be worked out: H( )f .10

1 .j
f
.10 Hz

1 .j
f
.500 HzCould come from 

a circuit like this:

The real and imaginary parts of the numerator are 
equal at the one corner frequency (called a "zero")

1 = .j
f c
.10 Hz

f c1
.10 Hz

The real and imaginary parts of the denominator 
are equal at the other corner frequency (pole)

1 = .j
f c

.500 Hz
f c2

.500 Hz

There are now three regions to approximate |H(f)|

Below the first corner frequency: f < .10 Hz H( )f ~ .10
1

1
= 10 =.20 log( )10 20 dB

Between the corner frequencies: .10 Hz < f < .500 Hz H( )f ~ .10

.j
f

10

1
= f proportional to f 

Above the second corner frequency: .1000 Hz < f H( )f ~ = 500 =.20 log( )500 53.98 dB.10

.j
f
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Ex. 4

A Transfer function of a typical amplifier: H( )ω
...j ω 0.182 sec

.1
.j ω

..6.875 104 rad

sec

1
.j ω

.416.67
rad

sec

ω C1
.416.67
rad

sec

ω C2
..6.875 104 rad

sec

Between the two poles (passband): H( )ω ~ =
..j ω i 0.182

.( )1
.j ω i

416.67

75.834 =.20 log( )75.834 37.6

Below ωC1 H( )ω ~
..j ω 0.182

.( )1 ( )1
proportional to ω 

Above ωC2 H( )ω ~
..j ω 0.182

.
.j ω

.6.875 104

.j ω
416.67

inversely proportional to ω 
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Warning

The Bode plots that we've covered here are the simplest types and only magnitude plots.  This will do for an initial 
introduction to simple filters, but this coverage is not complete.  
Complete Bode plots also include phase plots which we haven't looked at at all.  Also, if some poles and zeroes are 
too close to each other they can interact and even result in complex poles.  
If asked in a future classes if you have "covered" Bode plots, do not make the mistake of saying "yes".
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