Entering and Using Complex Numbers

Complex-Number Modes

The TI-83 displays complex numbers in rectangular form and polar form. To select a complex-number mode, press \textbf{MODE}, and then select either of the two modes.
- \textit{a+bi} (rectangular-complex mode)
- \textit{re}^\textit{\theta} \textit{i} (polar-complex mode)

On the TI-83, complex numbers can be stored to variables. Also, complex numbers are valid list elements.

In Real mode, complex-number results return an error, unless you entered a complex number as input. For example, in Real mode \texttt{ln(-1)} returns an error; in \textit{a+bi} mode \texttt{ln(-1)} returns an answer.

\begin{align*}
\text{Real mode} & \quad \text{a+bi mode} \\
\text{\texttt{ln(-1)}} & \quad \text{\texttt{ln(-1)}} \\
\text{\texttt{ERR:NONREAL ANS}} & \quad \text{\texttt{\texttt{3.141592654i}}}
\end{align*}

Rectangular-Complex Mode

Rectangular-complex mode recognizes and displays a complex number in the form \textit{a+bi}, where \textit{a} is the real component, \textit{b} is the imaginary component, and \textit{i} is a constant equal to \textit{\sqrt{-1}}.

\begin{align*}
\text{\texttt{ln(-1)}} & \quad 3.141592654i
\end{align*}

To enter a complex number in rectangular form, enter the value of \textit{a} (\textit{real component}), press [2] or [3], enter the value of \textit{b} (\textit{imaginary component}), and press [2nd] [i] (constant).

\begin{align*}
\text{real component} & \quad \text{or} \quad \text{imaginary component} \\
4+2i & \quad 4+2i
\end{align*}

Polar-Complex Mode

Polar-complex mode recognizes and displays a complex number in the form \textit{re}^\textit{\theta} \textit{i}, where \textit{r} is the magnitude, \textit{e} is the base of the natural log, \textit{\theta} is the angle, and \textit{i} is a constant equal to \textit{\sqrt{-1}}.

\begin{align*}
\text{\texttt{ln(-1)}} & \quad 3.141592654e^{-1} \\
\text{\texttt{\texttt{3.141592654i}}}
\end{align*}

To enter a complex number in polar form, enter the value of \textit{r} (\textit{magnitude}), press [2nd] [e^x] (exponential function), enter the value of \textit{\theta} (\textit{angle}), press [2nd] [i] (constant), and then press [1].

\begin{align*}
\text{magnitude} & \quad \text{e}^\text{angle} \\
10e^{\text{-36i}} & \quad 10e^{-1.4159265}
\end{align*}

Complex numbers are stored in rectangular form, but you can enter a complex number in rectangular form or polar form, regardless of the mode setting. The components of complex numbers can be real numbers or expressions that evaluate to real numbers; expressions are evaluated when the command is executed.

Entering Complex Numbers

Interpreting Complex Results

Complex numbers in results, including list elements, are displayed in either rectangular or polar form, as specified by the mode setting or by a display conversion instruction (page 2-10). In the example below, \textit{re}^\textit{\theta} \textit{i} and \textit{Degree} modes are set.

\begin{align*}
(2+i)-(1e^{(45i)}) & \\
1.482196004e^{(-5)}
\end{align*}
MATH CPX (Complex) Operations

MATH CPX Menu

To display the MATH CPX menu, press **MATH [5] [B]**.

<table>
<thead>
<tr>
<th>MATH NUM</th>
<th>CPX</th>
<th>PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>conj()</td>
<td>Returns the complex conjugate</td>
<td></td>
</tr>
<tr>
<td>real()</td>
<td>Returns the real part</td>
<td></td>
</tr>
<tr>
<td>imag()</td>
<td>Returns the imaginary part</td>
<td></td>
</tr>
<tr>
<td>angle()</td>
<td>Returns the polar angle</td>
<td></td>
</tr>
<tr>
<td>abs()</td>
<td>Returns the magnitude (modulus)</td>
<td></td>
</tr>
<tr>
<td>Rect</td>
<td>Displays the result in rectangular form</td>
<td></td>
</tr>
<tr>
<td>Polar</td>
<td>Displays the result in polar form</td>
<td></td>
</tr>
</tbody>
</table>

** conj() (conjugate) **

conj(a+b*i) returns a-b*i in a+b*i mode.

| conj(3+4i) = 3-4i | conj(3e<4i) = 3e<2.283185397... |

** real() (real part) **

real(a+b*i) returns a.

| real(3+4i) = 3 | real(3e<4i) = 1.960938663 |

** imag() (imaginary part) **

imag(a+b*i) returns b.

| imag(3+4i) = 4 | imag(3e<4i) = -2.270467486 |

** angle() **

returns the polar angle of a complex number or list of complex numbers, calculated as tan⁻¹(b/a), where b is the imaginary part and a is the real part. The calculation is adjusted by ±π in the second quadrant or -π in the third quadrant.

angle(a+b*i) returns tan⁻¹(b/a).

angle(re<θ*i) returns θ, where -π<θ<π.

| angle(3+4i) = 92.295218 | angle(3e<4i) = 2.263185397 |

** abs() (absolute value) **

returns the magnitude (modulus), \(\sqrt{a^2 + b^2} \), of a complex number or list of complex numbers.

| abs(3+4i) = 5 | abs(3e<4i) = 3 |

** Rect (display as rectangular) **

displays a complex result in rectangular form. It is valid only at the end of an expression. It is not valid if the result is real.

| (-2)+Rect | 1.414213562i |

** Polar (display as polar) **

displays a complex result in polar form. It is valid only at the end of an expression. It is not valid if the result is real.

| (-2)+Polar | 1.414213562e<1... |