Capacitor, Inductor Notes

$$
{ }^{\mathrm{v}_{\mathrm{C}}}=\frac{1}{\mathrm{C}} \cdot \int_{-\infty}^{\mathrm{t}} \quad \mathrm{i}_{\mathrm{C}}^{\mathrm{dt}}=\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}} \quad{ }^{\text {in }} \mathrm{i}_{\mathrm{C}}^{\mathrm{dt}+\mathrm{v}_{\mathrm{C}}(0)} \quad \mathrm{i}_{\mathrm{C}}=\mathrm{C} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{C}}
$$

Energy stored in electric field: $\mathrm{w}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$
parallel:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots
\end{aligned}
$$

Steady-state sinusoids:

Capacitor voltage cannot change instantaneously
series: $C_{e q}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots}$

Impedance: $\quad Z_{C}=\frac{1}{j \cdot \omega \cdot \mathrm{C}}=\frac{-\mathrm{j}}{\omega \cdot \mathrm{C}} \quad$ Current leads voltage by 90 deg

Inductors

henry $=\frac{\text { volt } \cdot \mathrm{sec}}{\mathrm{amp}}$

$$
{ }^{\mathrm{i}} \mathrm{~L}=\frac{1}{\mathrm{~L}} \cdot \int_{-\infty}^{\mathrm{t}} \quad{ }_{\mathrm{v}}^{\mathrm{L}} \mathrm{dt}=\frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}}
$$

${ }^{\mathrm{v}} \mathrm{L}^{\mathrm{dtt}+\mathrm{i}} \mathrm{L}^{\text {initial current }}$

$$
{ }^{\mathrm{v}} \mathrm{~L}=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{i}} \mathrm{~L}
$$

Inductor current cannot change instantaneously
Energy stored in magnetic field: $\mathrm{W}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I} \mathrm{L}^{2}$
series: $\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots$

$$
\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3} \mathrm{~L}_{4}
$$

Steady-state sinusoids:

Impedance: $\mathrm{Z}_{\mathrm{L}}=\mathrm{j} \cdot \omega \mathrm{L} \quad$ Current lags voltage by 90 deg
parallel: $\mathrm{L}_{\mathrm{eq}}=\frac{1}{\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\frac{1}{\mathrm{~L}_{3}}}+\ldots$

RC and RL first-order transient circuits

For all first order transients: ${ }^{\mathrm{V}} \mathrm{X}^{(\mathrm{t})}=\mathrm{v}_{\mathrm{X}}(\infty)+\left(\mathrm{v}_{\mathrm{X}}(0)-\mathrm{v} \mathrm{X}^{(\infty)}\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \quad \mathrm{i}_{\mathrm{X}}(\mathrm{t})={ }^{\mathrm{i}} \mathrm{X}^{(\infty)}+\left(\mathrm{i} \mathrm{X}^{(0)-\mathrm{i}} \mathrm{X}^{(\infty)}\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}$
Find initial Conditions $\quad\left(\mathrm{v}_{\mathrm{C}}\right.$ and/or $\left.\mathrm{i}_{\mathrm{L}}\right)$
Find conditions just before time $\mathrm{t}=0, \mathrm{v}_{\mathrm{C}}\left(0_{-}\right)$and $\mathrm{i}_{\mathrm{L}}(0-)$. These will be the same just after time $\mathrm{t}=0, \mathrm{v}_{\mathrm{C}}\left(0^{+}\right)$and $\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)$ and will be your initial conditions. (If initial conditions are zero: Capacitors are shorts, Inductors are opens.)
Use normal circuit analysis to find your desired variable: ${ }^{\mathrm{v}} \mathrm{X}^{(0)}$ or ${ }^{\mathrm{i}} \mathrm{X}^{(0)}$
Find final conditions ("steady-state" or "forced" solution)
Inductors are shorts Capacitors are opens Solve by DC analysis ${ }^{\mathrm{v}} \mathrm{X}^{(\infty)}$ or ${ }^{\mathrm{i}} \mathrm{X}^{(\infty)}$
RC Time constant $=\tau=\operatorname{RC}$

RL Time constant $=\tau=\frac{\mathrm{L}}{\mathrm{R}}$

$$
\mathrm{e}^{-1}=0.368 \quad 1-\mathrm{e}^{-1}=0.632
$$

