DC Notes

Unit

Coulomb (C)

Basic electrical quantities
 Charge, actually moves Q

Current, like fluid flow $I=\frac{Q}{s}$
Voltage, like pressure V
Resistance

Conductance
Power energy/time
KCL, Kirchhoff's Current Law
$\mathrm{I}_{\text {in }}=\mathrm{I}_{\text {out }}$ of any point, part, or section

KVL, Kirchhoff's Voltage Law

Node $=$ all points connected by wire, all at same voltage (potential)
Ohm's law (resistors)

$$
\mathrm{V}=\mathrm{I} \cdot \mathrm{R}
$$

$$
\begin{array}{ll}
+\frac{V}{V} & I=\frac{V}{R} \\
R & R=\frac{V}{I}
\end{array}
$$

Power $\quad \mathrm{P}_{\text {IN }}=\mathrm{P}_{\text {OUT }}$ for resistor circuits

$$
\text { contribute } \begin{aligned}
& \text { dissipate } \\
& +\infty+I^{2} \cdot \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \text { for resistors }
\end{aligned}
$$

series: $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots$

Voltage divider:

$$
\text { Maximum power transfer: } \begin{aligned}
\mathrm{R}_{\mathrm{L}} & =\mathrm{R}_{\mathrm{Th}} \\
\text { Load } & =\text { Thevenin's }
\end{aligned}
$$

Schematic symbols

voltage sources
current source
 connected A O meters

 inductor or coil

light bulb

Switch

Exactly the same current through each resistor

$$
\mathrm{V}_{\mathrm{Rn}}=\mathrm{V}_{\text {total }} \cdot \frac{\mathrm{R}_{\mathrm{n}}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots}
$$

current divider:
Exactly the same voltage across each resistor

$$
\mathrm{I}_{\mathrm{Rn}}=\mathrm{I}_{\text {total }} \cdot \frac{\frac{1}{\mathrm{R}_{\mathrm{n}}}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\ldots}
$$

Multiple unknowns:

1. Combine resistors into equivalents where possible.
2. Use superposition if there are multiple sources and you know all the resistors.
3. Use KCL, KVL, \& Ohm's laws to write multiple equations and solve.
