Exam-type Diode Circuit Examples

On an exam, I usually tell you what assumptions to make about the diodes, then you can show that you know how to analyze the circuit and test those assumptions. Since everyone starts with the same assumptions, everyone should do the same work.
Assume that diode D_{1} is conducting and that diode D_{2} is not conducting.
a) Find $\mathrm{V}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{R} 3}, \mathrm{I}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{R} 2}$ based on these assumptions. Do not recalculate if you find the assumptions are wrong.
$\mathrm{V}_{\mathrm{R} 1}=$ \qquad
$\mathrm{I}_{\mathrm{R} 1}=$ \qquad
$\mathrm{I}_{\mathrm{R} 3}=$ \qquad
$\mathrm{I}_{\mathrm{D} 1}=$ \qquad
$\mathrm{V}_{\mathrm{R} 2}=$ \qquad

Solution:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{R} 1}:=0.7 \cdot \mathrm{~V} & \\
\mathrm{I}_{\mathrm{R} 1}:=\frac{\mathrm{V}_{\mathrm{R} 1}}{\mathrm{R}_{1}} & \mathrm{I}_{\mathrm{R} 1}=3.5 \cdot \mathrm{~mA} \\
\mathrm{I}_{\mathrm{R} 3}:=\frac{\mathrm{V}_{\mathrm{in}}-0.7 \cdot \mathrm{~V}}{\mathrm{R}_{2}+\mathrm{R}_{3}} & \mathrm{I}_{\mathrm{R} 3}=4.6 \cdot \mathrm{~mA} \\
\mathrm{I}_{\mathrm{D} 1}:=\mathrm{I}_{\mathrm{R} 3}-\mathrm{I}_{\mathrm{R} 1} & \mathrm{I}_{\mathrm{D} 1}=1.1 \cdot \mathrm{~mA} \\
\mathrm{I}_{\mathrm{R} 2}:=\mathrm{I}_{\mathrm{R} 3} & \\
\mathrm{~V}_{\mathrm{R} 2}:=\mathrm{I}_{\mathrm{R} 2} \cdot \mathrm{R}_{2} & \mathrm{~V}_{\mathrm{R} 2}=0.46 \cdot \mathrm{~V}
\end{array}
$$

(circle one)
yes no
b) Was the assumption about D_{1} correct?

How do you know? (Specifically show a value which is or is not within a correct range.)

$$
\text { yes } \quad \mathrm{I}_{\mathrm{D} 1}=1.1 \cdot \mathrm{~mA}>0
$$

c) Was the assumption about D_{2} correct?

How do you know?

$$
\begin{aligned}
& \begin{array}{c}
\text { yes } \\
\text { (circle one) }
\end{array} \\
& \text { yes } \quad \mathrm{V}_{\mathrm{D} 2}=\mathrm{V}_{\mathrm{R} 2}=0.46 \cdot \mathrm{~V}<0.7 \mathrm{~V}
\end{aligned}
$$

d) Based on your answers to b) and c), which (if any) of the following was not correctly calculated in part a.
$\mathrm{V}_{\mathrm{R} 1}$
$\mathrm{I}_{\mathrm{R} 1}$
$\mathrm{I}_{\mathrm{R} 3}$
${ }^{\mathrm{I}} \mathrm{D} 2$
$\mathrm{V}_{\mathrm{R} 2}$
(circle any number of answers)

Circle none in this case ECE 2210 Diode Circuit Examples

ECE 2210 Diode Circuit Examples p2

Assume that diode D_{1} does NOT conduct.
Assume that diodes D_{2} and $\mathrm{D}_{3} \mathrm{DO}$ conduct.
a) Stick with these assumptions even if your answers come out absurd.
Find the following:
$\mathrm{V}_{\mathrm{D} 1}=$ \qquad
$\mathrm{I}_{\mathrm{D} 2}=$ \qquad
$\mathrm{I}_{\mathrm{D} 3}=$ \qquad
${ }^{\mathrm{I}} \mathrm{Vs}=$ \qquad

$$
43 \cdot \mathrm{~mA}+20 \cdot \mathrm{~mA}=63 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{S}}=2 \cdot \mathrm{~V}
$$

If I call this ground, then I can use some nodal voltages to help

b) Based on the numbers above, was the assumption about D_{1} correct? Circle one: yes no

How do you know? (Specifically show a value

$$
\mathrm{V}_{\mathrm{D} 1}=1.3>0.7 \mathrm{~V} \text { no }
$$ which is or is not within a correct range.)

c) Based on the numbers above, was the assumption about D_{2} correct? Circle one: yes no How do you know? (Show a value \& range.)

$$
\mathrm{I}_{\mathrm{D} 2}=15 \cdot \mathrm{~mA}>0 \quad \text { yes }
$$

d) Based on the numbers above, was the assumption about D_{3} correct? Circle one: yes no How do you know? (Show a value \& range.)

$$
\mathrm{I}_{\mathrm{D} 3}=43 \cdot \mathrm{~mA}>0 \text { yes }
$$

A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_{o}) you expect to see. Label important times and voltage levels.

If diode doesn't conduct:

$\mathrm{V}_{\mathrm{Z}}:=4 \cdot \mathrm{~V}$

Positive half at time: $\quad \frac{0.7 \cdot \mathrm{~V}}{10 \cdot \mathrm{~V}} \cdot 10 \cdot \mathrm{~ms}=0.7 \cdot \mathrm{~ms}$ Maximum:

Negative half
Diode conducts at: $-4 \cdot \mathrm{~V}$ input at time: $\quad 20 \cdot \mathrm{~ms}-\frac{4 \cdot \mathrm{~V}}{10 \cdot \mathrm{~V}} \cdot 10 \cdot \mathrm{~ms}=16 \cdot \mathrm{~ms}$
Maximum:

A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_{o}) you expect to see. Label important times and voltage levels.

If diode doesn't conduct:

$$
\text { When: } \quad \mathrm{v}_{\text {in }}:=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}} \cdot 2 \cdot \mathrm{~V} \quad \mathrm{v}_{\text {in }}=5 \cdot \mathrm{~V} \quad \text { at: } 5 \cdot \mathrm{~ms} \quad \text { Diode begins to conduct }
$$

When diode conducts:

