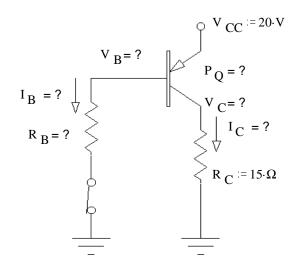


saturate (a switching circuit).

Saturation also depends on R_C and V_{CC} .


What is the largest value that R_B could be and still keep the transistor in saturation?

 $I_{Csat} := \frac{V_{CC} - 0.2 \cdot V}{R_{C}}$ $I_{Csat} = 236 \cdot mA$ $I_{B} := \frac{I_{Csat}}{\beta}$ $I_{B} = 1.18 \cdot mA$ $R_{Bmax} = \frac{5 \cdot V - 0.7 \cdot V}{I_{B}} = 3.644 \cdot k\Omega$

Ex.3 If the load must be connected to ground, a PNP transistor is often a better choice.

Let's assume a a small β and saturation and find the R_B necessary.

a small
$$\beta$$
: $\beta = 20$
 $V_C = V_{CC} - 0.2 \cdot V$
 $R_C = 15 \cdot \Omega$
 $I_{Csat} = \frac{V_C}{R_C}$
 $I_C = \frac{15 \cdot \Omega}{R_C}$
 $I_C = 1.32 \cdot A$
 $I_B = \frac{I_C \cdot Sat}{\beta}$
 $I_B = 66 \cdot mA$
 $V_B = V_{CC} - 0.7 \cdot V$
 $V_B = 19.3 \cdot V$
 $R_B = \frac{V_B}{I_B}$
 $R_B = 292 \cdot \Omega$
 $P_Q = 264 \cdot mW$

Ex.4 Sometimes one transistor can't $I_{R2} = ?$ provide enough amplification. $R_{\rm C} = 30 \cdot \Omega$ Sometimes you want to "invert" the input (make high off and low on). $R_2 = 500 \cdot \Omega$ $V_{C1} = V_{B2} = ?$ $\beta_2 := 25$ I _{B2}=? $V_{B1} = ?$ $V_{BB} := 5 \cdot V \quad R_{B} := 4 \cdot k\Omega \quad I_{B1} = ?$ $\beta_1 := 80$ Switch open Switch closed $I_{B10} = 0$ $V_{B10} = 0 \cdot V$ $I_{B1c} := \frac{5 \cdot V - 0.7 \cdot V}{R_B}$ $I_{B1c} = 1.08 \cdot mA$ $V_{B20} = 0.7 \cdot V$ assume Q_1 is in saturation $V_{C1c} = 0.2 \cdot V$ $I_{B20} := \frac{V_{CC} - 0.7 \cdot V}{R_2}$ $I_{C1c} := \frac{V_{CC} - V_{C1c}}{R_2}$ $I_{B20} = 28.6 \cdot mA$ $I_{C1c} = 29.6 \cdot mA$ $I_{R20} := I_{B20}$ $I_{R20} = 28.6 \cdot mA$ $\beta_1 \cdot I_{B1c} = 86 \cdot mA$ I_{C1} is controlled by R₂ $I_{C20} = \beta_2 \cdot I_{B20}$ $I_{C20} = 715 \cdot mA$ $V_{B2c} = V_{C1c}$ $V_{B2c} = 0.2 \cdot V$ $V_{C20} = V_{CC} - R_{C} \cdot I_{C20}$ $V_{C20} = -6.45 \cdot V$ $I_{B2c} := 0$ $I_{C2c} = 0 = I_{RCc}$ $V_{C20} = 0.2 \cdot V$ Q_2 must be in saturation: When the switch is open, current flows in $I_{C20} := \frac{V_{CC} - V_{C20}}{R_{C}}$ through the load resistor, R_C, When it is $I_{C20} = 493.3 \cdot mA$ closed, no current flows though the load. This is an example of logical "inversion". ECE 2210 Transistor Switching Circuit Examples, p2

Ex.5 Modified from F07 Final

A transistor is used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).

a) Assume the transistor is in saturation (fully on) and that switch has been closed for a long time. What is the load current?

$$I_C = ?$$

 $I_{Csat} := \frac{V_{CC} - 0.2 \cdot V}{R_I}$ $I_{Csat} = 600 \cdot mA$

b) β := 80~ find the minimum value of V_S , so that the transistor will be in saturation.

$$I_{Bmin} := \frac{I_{Csat}}{\beta}$$
 $I_{Bmin} = 7.5 \cdot mA$

$$\mathbf{V}_{Smin} = \mathbf{I}_{Bmin} \cdot \left(\mathbf{R}_{S} + \mathbf{R}_{1} \right) + 0.7 \cdot \mathbf{V}$$
 $\mathbf{V}_{Smin} = 2.8 \cdot \mathbf{V}_{Smin}$

Use this V_S for the rest of the problem.

c) Does the diode in this circuit ever conduct a significant current? If yes, when and how much?

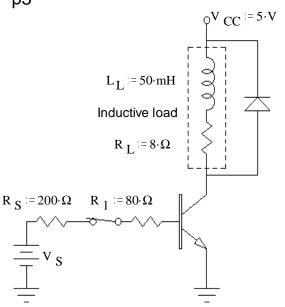
 $I_{Dmax} = I_{Csat} = 600 \cdot mA$ When the switch opens. from part a)

d) You got a bad transistor. $\beta = 60$ Find the new I_C, and V_{CE} and P_O.

$$I_C = ?$$
 $I_C := \beta \cdot I_{Bmin}$ $I_C = 450 \cdot mA$ Now operating in active region $V_{CE} = ?$ $V_{CE} := V_{CC} - R_L \cdot I_C$ $V_{CE} = 1.4 \cdot V$ $P_Q = ?$ $P_Q := V_{CE} \cdot I_C$ $P_Q = 0.63 \cdot W$

 $\beta = 60$ Use this for the rest of the problem.

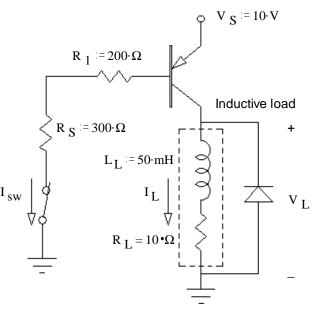
c) Find the minimum value of R_L so that the transistor will be in saturation.


$$I_{B} := \frac{V_{Smin} - 0.7 \cdot V}{R_{S} + R_{1}}$$
$$I_{B} = 7.5 \cdot mA$$
$$I_{Cmax} := \beta \cdot I_{B}$$
$$I_{Cmax} = 450 \cdot mA$$

$$I_{Cmax} = \beta \cdot I_B$$
 I_{Cmax}

$$R_{Lmin} := \frac{V_{CC} - 0.2 \cdot V}{I_{Cmax}} \qquad R_{Lmin} = 10.7 \cdot \Omega$$

d) R_L , can't be changed, so find the maximum value of R_1 so that the transistor will be in saturation.


I_{Csat} = 600 •mA from part a)
I_{Bmin} :=
$$\frac{I_{Csat}}{\beta}$$
 I_{Bmin} = 10 •mA
R_{1max} = $\frac{V_{Smin} - 0.7 \cdot V}{I_{Bmin}} - R_{S} = 10 \cdot \Omega$

Ex.6 From F05 Final with modifications from F06 Final

A transistor is used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).

- a) $\beta = 25$ Assume the transistor is in the active region, find I_{sw} , I_L , V_L , V_{EC} and P_Q .
 - $I_{B} := \frac{V_{S} 0.7 \cdot V}{R_{S} + R_{1}}$ $I_{B} = 18.6 \cdot mA = I_{sw}$ $I_{L} := \beta \cdot I_{B}$ $I_{L} = 465 \cdot mA$ $R_{L} := 10 \cdot \Omega$ $V_{L} := I_{L} \cdot R_{L}$ $V_{L} = 4.65 \cdot V$ $V_{EC} := V_{S} V_{L}$ $V_{EC} = 5.35 \cdot V$ $P_{O} := V_{EC} \cdot I_{L}$ $P_{O} = 2.488 \cdot W$

b) Was the transistor actually operating in the active region? yes no (circle one) yesHow do you know? (Specifically show a value which is or is not within a correct range.)

$$V_{EC} = 5.35 \cdot V > 0.2 \cdot V$$

c) Find the maximum value of R_1 , so that the transistor will be in saturation.

If saturated:
$$V_{EC} := 0.2 \cdot V$$

 $I_{Csat} := \frac{V_S - 0.2 \cdot V}{R_L}$
 $I_{Csat} = 0.98 \cdot A$
 $I_{Bmin} := \frac{I_{Csat}}{\beta}$
 $I_{Bmin} = 39.2 \cdot mA$
 $R_{1max} = \frac{V_S - 0.7 \cdot V}{I_{Bmin}} - R_S = -63 \cdot \Omega$ NOT POSSIBLE

d) R $_1 = 200 \cdot \Omega$ and can't be changed, find the minimum value of β so that the transistor will be in saturation.

$$I_{Csat} = 0.98 \cdot A$$
 $\beta_{min} = \frac{I_{Csat}}{I_{B}}$ $\beta_{min} = 52.7$

e) How much power is dissipated by the transistor if it has the β you found in part d)

$$P_Q = 0.2 \cdot V \cdot I_{Csat}$$
 $P_Q = 0.196 \cdot W$

- f) Does the diode in this circuit ever conduct a significant current? If yes, when and how much? When the switch opens. $I_{Dmax} = I_{Csat} = 0.98 \cdot A$ from part a)
- g) The switch is open for a while. What is the load current (I_f) now? 0

Ex.7 From F13 Final

Transistors are used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).

- a) In order for current to flow in through the load, the switch should be:
 i) closed or ii) open (Circle one)
- b) Assume the switch has been in the position you circled above for a long time. I_L is 1.3A. Find the power dissipated by transistor Q_2 (neglect base current and V_{BE}).

 $I_{L} := 1.3 \cdot A \qquad P_{Q2} = ? \qquad R_{L} := 3 \cdot \Omega$ $V_{CE2} := V_{CC2} - I_{L} \cdot R_{L} \qquad V_{CE2} = 1.1 \cdot V$ $P_{Q2} := V_{CE2} \cdot I_{L} \qquad P_{Q2} = 1.43 \cdot W$

c) This is an unacceptable power loss, so you would like to determine the minimum β_2 needed so that Q_2 will be in saturation. Assume Q_1 is also in saturation. You may assume $I_E = I_C$ for both traistors. $\beta_{2\min} = ?$

$$I_{L} := \frac{V_{CC2} - 0.2 \cdot V}{R_{L}} \qquad I_{L} = 1.6 \cdot A = I_{C2}$$

$$V_{E2} := V_{CC2} - 0.2 \cdot V \qquad V_{E2} = 4.8 \cdot V$$

$$V_{B2} := V_{E2} + 0.7 \cdot V \qquad V_{B2} = 5.5 \cdot V$$

$$V_{C1} := V_{B2} + 0.2 \cdot V \qquad V_{C1} = 5.7 \cdot V$$

$$I_{C1} := \frac{V_{CC1} - V_{C1}}{R_{2}} \qquad I_{B2} := I_{C1} \qquad I_{B2} = 57.5 \cdot M \qquad \beta_{2min} = \frac{I_{L}}{I_{B2}} = 27.826$$
Better answer
$$I_{B2} := I_{C1} \cdot \left(\frac{\beta_{1} + 1}{\beta_{1}}\right) \qquad I_{B2} = 58.075 \cdot M \qquad \beta_{2min} = \frac{I_{L}}{I_{B2}} - 1 = 26.551$$

You replace Q_2 with a new transistor that has a β greater than what you just calculated.

d) How much power is dissipated by the new transistor Q_2 (neglect base current and V_{BE})? P_{O2} = ?

$$P_{O2} = 0.2 \cdot V \cdot I_L \qquad P_{O2} = 320 \cdot mW$$

e) What is the maximum value of R_1 needed to saturate Q_1 ? $\beta_1 = 100$

$$I_{B1min} := \frac{{}^{1}C1}{\beta_{1}} \qquad I_{B1min} = 0.575 \cdot mA \qquad V_{B1} := V_{B2} + 0.7 \cdot V \qquad V_{B1} = 6.2 \cdot V$$

$$R_{1max} := \frac{V_{CC1} - V_{B1}}{I_{B1min}} \qquad R_{1max} = 3.13 \cdot k\Omega$$

f) Does the diode in this circuit ever conduct a significant current? If yes, when and how much? When the switch closes. $I_{Dmax} = I_L = 1.6 \cdot A$ from part c)

Ex.8 From F12 Final

A couple of transistors are used to control the current flow through an inductive load. The switch has been closed, as shown, for a long time.

a) You measure the voltage at each collector (referenced to ground) as shown on the drawing. Find the power dissipated by transistor Q_2 .

$$V_{C1} := 5 \cdot V \qquad V_{C2} := 2 \cdot V$$

$$I_{L} := \frac{V_{CC} - 2 \cdot V}{R_{L}} \qquad I_{L} = 1.5 \cdot A$$

$$P_{Q2} := V_{C2} \cdot I_L \qquad P_{Q2} = 3 \cdot W$$

b) Find the β of transistor Q_2 .

$$V_{R2} := 5 \cdot V - 0.7 \cdot V$$

 $V_{R2} := 4.3 \cdot V$
 $I_{R2} := \frac{V_{R2}}{R_2}$
 $\beta_2 := \frac{I_L}{I_{R2}}$
 $\beta_2 = 34.884$

c) Find the β of transistor Q_1 .

$$I_{R1} := \frac{V_{CC} - 0.7 \cdot V}{R_1}$$
 $\beta_1 := \frac{I_{R2}}{I_{R1}}$ $\beta_1 = 58.9$

d) Find the minimum β for transistor Q₁ to be in saturation. $\beta_{1\min} = ?$

If Q_1 is saturated: $V_{R2} = V_{CC} - 0.2 \cdot V - 0.7 \cdot V$ $V_{R2} = 7.1 \cdot V_{R2}$

If Q₁ is saturated:
$$I_{R2} = \frac{V_{R2}}{R_2}$$
 $I_{R2} = 71 \cdot mA$ $\beta_{1\min} = \frac{I_{R2}}{I_{R1}}$ $\beta_{1\min} = 97.3$

You replace Q_1 with a different transistor so that now: $\beta_1 = 200$ Use this from now on. e) Find the new load current (I_L) assuming transistor Q_2 is in the active region.

 Q_1 is saturated: $I_{R2} = 71 \cdot mA$ $I_L = I_{R2} \cdot \beta_2$ $I_L = 2.477 \cdot A$

f) Check the assumption that ${\rm Q}_2$ is in the active region and recaculate ${\rm I}_L$ if necessary.

$$I_{R2} \cdot \beta_{2} \cdot R_{L} = 9.907 \cdot V \qquad V_{CE2} := V_{CC} - I_{R2} \cdot \beta_{2} \cdot R_{L} \qquad V_{CE2} = -1.907 \cdot V \text{ Not possible}$$

$$Q_{2} \text{ is saturated:} \quad I_{L} := \frac{V_{CC} - 0.2 \cdot V}{R_{L}} \qquad I_{L} = 1.95 \cdot A$$

g) Does the diode in this circuit ever conduct a significant current? If yes, when and how much?

When the switch opens. I $_{Dmax}$ = 1.95 A from part f)

 $R_{1} := 10 \cdot k\Omega$ $R_{2} := 100 \cdot \Omega$ Q_{1} Q_{2} Q_{2}