Ex1 a) Find the expression for $v_{c}(t)$ if the switch is closed at time $t=0$ and $\mathrm{v}_{\mathrm{c}}(0)=0$.
${ }^{\mathrm{v}} \mathrm{C}^{(t)}={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\left({ }^{\mathrm{v}} \mathrm{C}^{(0)-\mathrm{v}_{C}} \mathrm{C}^{(\infty)}\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}$

$\tau=60 \cdot \mu \mathrm{~s}$
$\mathrm{V}_{\text {in }}:=9 \cdot \mathrm{~V}$

b) What is the voltage across the capacitor, C , at $\mathrm{t}=0.1 \mathrm{~ms}$?

$$
{ }^{\mathrm{v}} \mathrm{C}^{(25 \cdot \mu \mathrm{~s})}=9 \cdot \mathrm{~V}-9 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{100 \cdot \mu \mathrm{~s}}{60 \cdot \mu \mathrm{~s}}}=7.3 \cdot \mathrm{~V}
$$

c) When will the current through the resistor be $\mathrm{i}_{\mathrm{R}}:=5 \cdot \mathrm{~mA}$?

$$
\begin{array}{rlr}
{ }^{\mathrm{i}} \mathrm{R}^{(\infty)} & =0 \cdot \mathrm{~mA} \quad{ }^{\mathrm{i}} \mathrm{R}^{(0)}=\frac{9 \cdot \mathrm{~V}}{\mathrm{R}}=15 \cdot \mathrm{~mA} & \text { found from drawing } \\
& \begin{array}{ll}
\text { redraw at } \\
\mathrm{t}=0^{+} \text {to }
\end{array} \\
{ }^{\mathrm{i}} \mathrm{R}^{(\mathrm{t})} & ={ }^{\mathrm{i}} \mathrm{R}^{(\infty)+\left({ }^{\mathrm{i}} \mathrm{R}^{(0)-\mathrm{i}} \mathrm{R}^{(\infty)}\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}} & \text { find } \mathrm{i}_{\mathrm{R}}(0)
\end{array}
$$

$$
=15 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{60 \cdot \mu \mathrm{~s}}}=5 \cdot \mathrm{~mA} \text { at some time }, \mathrm{t}
$$

$$
\text { Solve for } \mathrm{t}=-\tau \cdot \ln \left(\frac{5 \cdot \mathrm{~mA}}{15 \cdot \mathrm{~mA}}\right)=65.92 \cdot \mu \mathrm{~s}
$$

d) When will the current through the resistor be $\mathrm{i}_{\mathrm{R}}:=20 \cdot \mathrm{~mA}$?

Since the initial condition is about 15 mA and the final condition is $0 \mathrm{~mA}, \mathrm{i}_{\mathrm{R}}$ will never be 20 mA .

Ex2 A $1000 \mu \mathrm{~F}$ capacitor has an initial charge of 12 volts. A $20-\Omega$ resistor is connected across the capacitor at time $t=0$. Find the energy dissipated by the resistor in the first 5 time constants.

After 5 time constants nearly all of the energy initially stored in the capacitor will be dissipated by the resistor. $\quad \mathrm{C}:=1000 \cdot \mu \mathrm{~F} \quad \mathrm{~V}_{\mathrm{C}}:=12 \cdot \mathrm{~V} \quad \mathrm{~W}_{\mathrm{C}}:=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2} \quad \mathrm{~W}_{\mathrm{C}}=0.072 \cdot$ joule
You can get to this answer just by knowing a little about the exponential curve, but what if you want a more accurate answer? Then you'll have to find the remaining voltage across the capacitor at $\mathrm{t}=5 \mathrm{t}$ and subtract

$$
\begin{aligned}
& \text { the energy left in the capacitor at that time. } \\
& \left.{ }^{\mathrm{v}} \mathrm{C}^{(0)}=12 \cdot \mathrm{~V} \quad \mathrm{v}_{\mathrm{C}}(\infty)=0 \cdot \mathrm{~V} \quad{ }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t}}\right)={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\left(\mathrm{v}_{\mathrm{C}}(0)-\mathrm{v}_{\mathrm{C}}(\infty)\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=0 \cdot \mathrm{~V}+(12 \cdot \mathrm{~V}-0 \cdot \mathrm{~V}) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=12 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \\
& \text { at } \mathrm{t}=5 \tau: \quad{ }^{\mathrm{v}} \mathrm{C}^{(5 \cdot \tau)}=12 \cdot \mathrm{~V} \cdot \mathrm{e}^{-5}=81 \cdot \mathrm{mV} \quad \frac{1}{2} \cdot \mathrm{C} \cdot(81 \cdot \mathrm{mV})^{2}=3.281 \cdot 10^{-6} \quad \cdot \text { joule } \\
& \text { Not surprisingly, this makes no significant difference: } \\
& \mathrm{W}_{\mathrm{R}}=\mathrm{W}_{\mathrm{C}}-\frac{1}{2} \cdot \mathrm{C} \cdot(81 \cdot \mathrm{mV})^{2}=0.072 \cdot \text { joule }
\end{aligned}
$$

Ex3 The capacitor is initially uncharged. The switch is in the upper position from 0 to 2 ms and is switched down at time $\mathrm{t}=2 \mathrm{~ms}$.
a) What is the capacitor voltage, $v_{C}(t)$

First interval $\quad{ }^{v} \mathrm{C}^{(0)}=0 \cdot \mathrm{~V}$

$$
{ }_{v_{C}}(\mathrm{t})={ }^{\mathrm{v}} \mathrm{C}^{(\infty)+\left({ }^{\mathrm{v}} \mathrm{C}^{(0)-\mathrm{v}_{\mathrm{C}}}{ }^{(\infty)}\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=24 \cdot \mathrm{~V}+(0 \cdot \mathrm{~V}-24 \cdot \mathrm{~V}) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{1.08 \cdot \mathrm{~ms}}}} \quad \text { at } 2 \mathrm{~ms}: \quad 24 \cdot \mathrm{~V}-24 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{2 \cdot \mathrm{~ms}}{1.08 \cdot \mathrm{~ms}}}=20.23 \cdot \mathrm{~V}
$$

Second interval, define a new time, $\mathrm{t}^{\prime}=\mathrm{t}-2 \mathrm{~ms}$

${ }^{\prime} C\left(\mathrm{t}^{\prime}\right)=\mathrm{v}_{\mathrm{C}}(\infty)+\left(\mathrm{v}_{\mathrm{C}}(0)-\mathrm{v}_{\mathrm{C}}(\infty)\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}^{\prime}}{\tau^{\prime}}}=10 \cdot \mathrm{~V}+(20.23 \cdot \mathrm{~V}-10 \cdot \mathrm{~V}) \cdot \mathrm{e}^{-\frac{\mathrm{t}^{\prime}}{0.28 \cdot \mathrm{~ms}}}=10 \cdot \mathrm{~V}+10.23 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}-2 \cdot \mathrm{~ms}}{0.28 \cdot \mathrm{~ms}}}$
$0<\mathrm{t}<2 \mathrm{~ms}$
$\mathrm{~V}_{\mathrm{C}}(\mathrm{t})=24 \cdot \mathrm{~V}-24 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{2 \cdot \mathrm{~ms}}{1.08 \cdot \mathrm{~ms}}}$
$t>2 \mathrm{~ms}$
$\mathrm{~V}_{\mathrm{C}}(\mathrm{t})=10 \cdot \mathrm{~V}+10.23 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}-2 \cdot \mathrm{~ms}}{0.28 \cdot \mathrm{~ms}}}$
b) When is voltage across the capacitor 12 V AND getting smaller?
$12 \cdot \mathrm{~V}=10 \cdot \mathrm{~V}+10.233 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t} 12}{0.28 \cdot \mathrm{~ms}}}$

$$
\frac{12 \cdot \mathrm{~V}-10 \cdot \mathrm{~V}}{10.23 \cdot \mathrm{~V}}=\mathrm{e}^{-\frac{\mathrm{t} 12}{0.28 \cdot \mathrm{~ms}}}
$$

$$
\ln \left(\frac{12 \cdot \mathrm{~V}-10 \cdot \mathrm{~V}}{10.23 \cdot \mathrm{~V}}\right)=-\left(\frac{\mathrm{t} 12}{0.28 \cdot \mathrm{~ms}}\right)
$$

$\mathrm{t}_{12}=-0.28 \cdot \mathrm{~ms} \cdot \ln \left(\frac{12 \cdot \mathrm{~V}-10 \cdot \mathrm{~V}}{10.23 \cdot \mathrm{~V}}\right)=0.46 \cdot \mathrm{~ms}$

Before the switch closes, $\mathrm{t}=0$ -

Final time, $t=\infty$

$$
{ }^{\mathrm{v}_{\mathrm{R} 3}}(\infty)=\frac{\mathrm{R}_{23}}{\mathrm{R}_{1}+\mathrm{R}_{23}} \cdot \mathrm{~V}_{\text {in }}=5.625 \cdot \mathrm{~V}
$$

$$
\mathrm{i}_{\mathrm{L}}(\infty)=\frac{\mathrm{v}_{\mathrm{R} 3}(\infty)}{\mathrm{R}_{3}}=\frac{5.625 \cdot \mathrm{~V}}{15 \cdot \Omega}=375 \cdot \mathrm{~mA}
$$

$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}(\infty)+\left(\mathrm{i}_{\mathrm{L}}(0)-\mathrm{i}_{\mathrm{L}}(\infty)\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=375 \cdot \mathrm{~mA}+(0 \cdot \mathrm{~mA}-375 \cdot \mathrm{~mA}) \cdot \mathrm{e}^{\frac{-\mathrm{t}}{100 \cdot \mu \mathrm{~s}}}=375 \cdot \mathrm{~mA}-375 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{100 \cdot \mu \mathrm{~s}}}$
b) When is the voltage across $R_{2}=10 \mathrm{~V}$?

Before the switch closes, $\mathrm{t}=0$ -

$$
{ }^{\mathrm{v}} \mathrm{R}_{2}(0)=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \cdot \mathrm{~V}_{\text {in }}=11.25 \cdot \mathrm{~V}
$$

From drawing above at $t=\infty$

$$
\begin{aligned}
{ }^{{ }^{\mathrm{R}} \mathrm{R} 2}(\infty) & ={ }^{\mathrm{v}} \mathrm{R}_{2}(\infty)=\frac{\mathrm{R}_{23}}{\mathrm{R}_{1}+\mathrm{R}_{23}} \cdot \mathrm{~V}_{\text {in }}=5.625 \cdot \mathrm{~V} \\
{ }^{\mathrm{v}_{\mathrm{R}} 2(\mathrm{t})} & ={ }^{\mathrm{v}} \mathrm{R}_{2}(\infty)+\left({ }^{\mathrm{v}} \mathrm{R}_{2}(0)-\mathrm{v}_{\mathrm{R} 2}(\infty)\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \\
& =5.625 \cdot \mathrm{~V}+(11.25 \cdot \mathrm{~V}-5.625 \cdot \mathrm{~V}) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{100 \cdot \mu \mathrm{~s}}} \\
& =10 \cdot \mathrm{~V} \text { at some time, solving for that time } \ldots
\end{aligned}
$$

$$
\mathrm{t}=-\tau \cdot \ln \left(\frac{10 \cdot \mathrm{~V}-5.625 \cdot \mathrm{~V}}{11.25 \cdot \mathrm{~V}-5.625 \cdot \mathrm{~V}}\right)=25 \cdot \mu \mathrm{~s}
$$

Alternatively, when $\mathrm{v}_{\mathrm{R} 2}(\mathrm{t})=10 \mathrm{~V}$, then $\mathrm{v}_{\mathrm{R} 1}(\mathrm{t})=5 \mathrm{~V}$ and $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\frac{5 \cdot \mathrm{~V}}{\mathrm{R}_{1}}-\frac{10 \cdot \mathrm{~V}}{\mathrm{R}_{2}}=83.333 \cdot \mathrm{~mA}$

$$
\mathrm{t}=-\tau \cdot \ln \left(\frac{83.333 \cdot \mathrm{~mA}-375 \cdot \mathrm{~mA}}{-375 \cdot \mathrm{~mA}}\right)=25 \cdot \mu \mathrm{~s}
$$

c) What is the $v_{L}(t)$ expression?

$$
\mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{v}_{\mathrm{L}}(\infty)+\left(\mathrm{v}_{\mathrm{L}}(0)-\mathrm{v}_{\mathrm{L}}(\infty)\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=0 \cdot \mathrm{~V}+(11.25 \cdot \mathrm{~V}-0 \cdot \mathrm{~V}) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{100 \cdot \mu \mathrm{~s}}}
$$

Ex5 The switch has been closed for a long time and is opened (as shown) at time $t=0$.
a) Find the complete expression for $i_{L}(t)$.

Before the switch opens, $t=0$ -

b) Find i_{L} at time $\mathrm{t}=1.4 \tau . \quad \mathrm{i}_{\mathrm{L}}(1.4 \cdot \tau)=112.5 \cdot \mathrm{~mA}-62.5 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{1.4 \cdot \tau}{\tau}}=112.5 \cdot \mathrm{~mA}-62.5 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-1.4}=97.088 \cdot \mathrm{~mA}$
c) At time $t=1.4 \tau$ the switch is closed again. Find the complete expression for $\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}^{\prime}\right)$, where t^{\prime} starts at $\mathrm{t}=1.4 \tau$. Be sure to clearly show the time constant.

$\mathrm{i}_{\mathrm{L}}(0)=97.1 \cdot \mathrm{~mA}$ from part b)
$\mathrm{i}_{\mathrm{L}}(\infty)=50 \cdot \mathrm{~mA}$ initial value from part a)
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}(\infty)+\left(\mathrm{i}_{\mathrm{L}}(0)-\mathrm{i}_{\mathrm{L}}(\infty)\right) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=50 \cdot \mathrm{~mA}+(97.1 \cdot \mathrm{~mA}-50 \cdot \mathrm{~mA}) \cdot \mathrm{e}^{\frac{-\mathrm{t}^{\prime}}{120.4 \cdot \mu \mathrm{ss}}}=50 \cdot \mathrm{~mA}+47.1 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{t}^{\prime}}{120.4 \cdot \mu \mathrm{H}}}$

ECE 2210 First-Order Transient Examples, p4

