Laplace impedances

Resistor

$\mathbf{Z}_{\mathbf{R}}=\mathrm{R}$

$\mathbf{Z}_{\mathbf{C}}=\frac{1}{\mathrm{C} \cdot \mathrm{s}}$

Transfer function

Use Laplace impedances, manipulate your circuit equation(s) to find a transfer function:

Characteristic equation

To find the poles of the transfer function

$$
\mathrm{s}^{2}+\mathrm{b} \cdot \mathrm{~s}+\mathrm{k}=0
$$

characteristic equation
Complete solution
Solutions to the characteristic equation: $s_{1}=-\frac{b}{2}+\frac{\sqrt{\mathrm{b}^{2}-4 \cdot k}}{2}$

$$
s_{2}=-\frac{b}{2}-\frac{\sqrt{b^{2}-4 \cdot \mathrm{k}}}{2}
$$

Find initial Conditions $\quad\left(\mathrm{v}_{\mathrm{C}}\right.$ and/or $\left.\mathrm{i}_{\mathrm{L}}\right)$
Find conditions of just before time $t=0, v_{C}(0-)$ and $i_{L}(0-)$. These will be the same just after time $t=0, v_{C}(0+)$ and $i_{L}(0+)$ and will be your initial conditions.
Use normal circuit analysis to find your desired variable: ${ }^{v} X^{(0)}$ or ${ }^{i} X^{(0)}$
Also find: $\frac{d}{d t} v X^{(0)}$ or $\frac{d}{d t} i X^{(0)}$ The trick to finding these is to see that: $\frac{d}{d t} v C^{(0)}=\frac{{ }^{i} C^{(0)}}{C} \quad$ and $\quad \frac{d}{d t} i L^{(0)}=\frac{{ }^{v} L^{(0)}}{L}$

Find final conditions ("steady-state" or "forced" solution)

DC inputs: Inductors are shorts Capacitors are opens Solve by DC analysis ${ }^{\mathrm{v}} \mathrm{X}^{(\infty)}$ or ${ }^{\mathrm{i}} \mathrm{X}^{(\infty)}$
AC inputs: Solve by AC steady-state analysis using j ω
$X(t)$ may be replaced by $v_{X}(t), i_{X}(t)$ or any desired variable in the equations below
Overdamped $\quad b^{2}-4 \cdot k>0 \quad s_{1}$ and s_{2} are real and negative
$X(t)=X(\infty)+B \cdot e^{s} \cdot{ }^{1 \cdot t}+D \cdot e^{s} \cdot{ }^{2 \cdot t}$

$X(0)=X(\infty)+B+D \quad \frac{d}{d t} X(0)=B \cdot s_{1}+D \cdot s_{2} \quad$ Solve simultaneously for B and D.
Critically damped $\mathrm{b}^{2}-4 \cdot \mathrm{k}=0 \quad \mathrm{~s}_{1}=\mathrm{s}_{2}=-\frac{\mathrm{b}}{2}=\mathrm{s} \quad \mathrm{s}_{1}$ and s_{2} are
$X(t)=X(\infty)+B \cdot e^{s \cdot t}+D \cdot t \cdot e^{s \cdot t} \quad$ real, equal and
$\mathrm{X}(0)=\mathrm{X}(\infty)+\mathrm{B}$
so.. $B=X(0)-X(\infty)$
$\frac{d}{d t} X(0)=B \cdot s+D$
so.. $D=\frac{d}{d t} X(0)-B \cdot s$

Underdamped $\quad \mathrm{b}^{2}-4 \cdot \mathrm{k}<0 \quad \mathrm{~s}_{1}=\alpha+\mathrm{j} \cdot \omega \quad \mathrm{s}_{2}=\alpha-\mathrm{j} \cdot \omega \quad \alpha$ is negative complex s_{1} and s_{2}
$X(t)=X(\infty)+e^{\alpha \cdot t} \cdot(B \cdot \cos (\omega \cdot t)+D \cdot \sin (\omega \cdot t))$
$X(0)=X(\infty)+B$
so.. $B=X(0)-X(\infty)$
$\frac{d}{d t} X(0)=B \cdot \alpha+D \cdot \omega$
so.. $D=\frac{\frac{\mathrm{dt}}{} \mathrm{X}(0)-\mathrm{B} \cdot \alpha}{\omega}$

How do we find B and D ?? You will use the canned solutions, which I will derive here, using initial conditions.
These are worked out within an example, starting on page 1.12 of the main Second-Order Transients handout.
Overdamped
Let's assume we've found that s_{1} and s_{2} are real and negative, and you're interested in the capacitor voltage.
Then: $\left.{ }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t}}\right)=\mathrm{v}_{\mathrm{C}}(\infty)+\mathrm{B} \cdot \mathrm{e}^{\mathrm{s}_{1} \cdot \mathrm{t}}+\mathrm{D} \cdot \mathrm{e}^{\mathrm{s} 2 \cdot \mathrm{t}}$
At time $\mathrm{t}=0 \quad \mathrm{v}_{\mathrm{C}}(0)={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\mathrm{B}+\mathrm{D}=\mathrm{v}_{\mathrm{C}}\left(0^{-}\right)$, whatever it was just before time $\mathrm{t}=0$. It CANNOT change instantly Same for $\mathrm{i}_{\mathrm{L}}(0)$
But that's only one equation, and we have two unknowns, B and D.
The trick is to differentiate the solution: $\left.\quad{ }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t}}\right)={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\mathrm{B} \cdot \mathrm{e}^{\mathrm{s} 1 \cdot \mathrm{t}}+\mathrm{D} \cdot \mathrm{e}^{\mathrm{s} 2 \cdot \mathrm{t}}$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}^{\mathrm{v}} \mathrm{C}^{(\mathrm{t})}=0+\mathrm{B} \cdot \mathrm{~s}_{1} \cdot \mathrm{e}^{\mathrm{s}^{\mathrm{s}} \cdot \mathrm{t}}+\mathrm{D} \cdot \mathrm{~s} \cdot 2 \cdot \mathrm{e}^{\mathrm{s}_{2} \cdot \mathrm{t}}
$$

At time $\mathrm{t}=0: \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}^{(0)}=\mathrm{B} \cdot \mathrm{s}_{1}+\mathrm{D} \cdot \mathrm{s}_{2} \quad=$ initial slope
From initial conditions, above: $\quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}^{(}(0)=\frac{{ }^{\mathrm{i}} \mathrm{C}^{(0)}}{\mathrm{C}}=\mathrm{B} \cdot \mathrm{s} 1_{1}+\mathrm{D} \cdot \mathrm{s} 2 \quad$ The second equation!
Solve simultaneously for B and D.

$$
\text { But } \mathrm{i}_{\mathrm{C}} \text { CAN change instantly, so... }
$$

We will find ${ }^{\mathrm{i}} \mathrm{C}^{(0)}$ from $\mathrm{i}_{\mathrm{L}}(0)={ }^{\mathrm{i}}{ }_{\mathrm{L}}\left(0^{-}\right)$because i_{L} can't change instantly This will require circuit analysis at time $\mathrm{t}=0+$

Underdamped

Let's assume we've found complex s_{1} and $\mathrm{s}_{2} \quad \mathrm{~s}_{1}=\alpha+\mathrm{j} \cdot \omega \quad \mathrm{s}_{2}=\alpha-\mathrm{j} \cdot \omega \quad \alpha$ is negative
Then: ${ }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t})}={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\mathrm{e}^{\alpha \cdot \mathrm{t}} \cdot(\mathrm{B} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{D} \cdot \sin (\omega \cdot \mathrm{t}))$
At time $\mathrm{t}=0 \quad \mathrm{v}_{\mathrm{C}}(0)=\mathrm{v}_{\mathrm{C}}(\infty)+\mathrm{B}=\mathrm{v}_{\mathrm{C}}\left(0^{-}\right) \quad \mathrm{B}=\mathrm{v}_{\mathrm{C}}(0)-\mathrm{v}_{\mathrm{C}}{ }^{(\infty)}$
Now differentiate the solution: $\mathrm{v}_{\mathrm{C}}(\mathrm{t})={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\mathrm{e}^{\alpha \cdot \mathrm{t}} \cdot(\mathrm{B} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{D} \cdot \sin (\omega \cdot \mathrm{t}))$

$$
\begin{aligned}
& \text { recall: } \frac{d}{d t}(f(t) \cdot g(t))=\left(\frac{d}{d t} f(t)\right) \cdot g(t)+f(t) \cdot\left(\frac{d}{d t} g(t)\right) \\
& \text { yields: } \frac{d}{d t} v C^{(t)}=\alpha \cdot e^{\alpha \cdot t} \cdot(B \cdot \cos (\omega \cdot t)+D \cdot \sin (\omega \cdot t))+e^{\alpha \cdot t} \cdot(-B \cdot \sin (\omega \cdot t) \cdot \omega+D \cdot \cos (\omega \cdot t) \cdot \omega)
\end{aligned}
$$

$$
\text { At time } \mathrm{t}=0: \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{C}}(0)=\mathrm{B} \cdot \alpha+\mathrm{D} \cdot \omega \quad \text { Solve for: } \mathrm{D}=\frac{\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} C^{(0)-B \cdot \alpha}}{\omega}
$$

Critically damped

Let's assume we've found real $\mathrm{s}_{1}=\mathrm{s}_{2}=\mathrm{s}$
Then: ${ }^{v} C^{(t)}={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\mathrm{B} \cdot \mathrm{e}^{\mathrm{s} \cdot \mathrm{t}}+\mathrm{D} \cdot \mathrm{t} \cdot \mathrm{e}^{\mathrm{s} \cdot \mathrm{t}}$
At time $\mathrm{t}=0 \quad \mathrm{v}_{\mathrm{C}}(0)=\mathrm{v}_{\mathrm{C}}(\infty)+\mathrm{B}=\mathrm{v}_{\mathrm{C}}\left(0^{-}\right) \quad \mathrm{B}=\mathrm{v}_{\mathrm{C}}(0)-\mathrm{v}_{\mathrm{C}}(\infty)$
Now differentiate the solution: $\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}^{\mathrm{v}} \mathrm{C}^{(\mathrm{t})}=\mathrm{B} \cdot \mathrm{s} \cdot \mathrm{e}^{\mathrm{s} \cdot \mathrm{t}}+\mathrm{D} \cdot \mathrm{e}^{\mathrm{s} \cdot \mathrm{t}}+\mathrm{D} \cdot \mathrm{t} \cdot \mathrm{s} \cdot \mathrm{e}^{\mathrm{s} \cdot \mathrm{t}}$

$$
\frac{d}{d t} v C^{(0)}=B \cdot s+D \quad \text { Solve for: } \quad D=\frac{d}{d t} v C^{(0)}-B \cdot s
$$

Same goes for and variable (like $i_{L}(t)$, for example). $\quad \mathrm{v}_{\mathrm{C}}(0+)=\mathrm{v}_{\mathrm{C}}(0-) \quad \mathrm{i}_{\mathrm{L}}(0+)=i_{\mathrm{L}}(0-)$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{C}}(0)=\frac{\mathrm{i}_{\mathrm{C}}(0)}{\mathrm{C}} \quad \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}(0)=\frac{\mathrm{v}_{\mathrm{L}}(0)}{\mathrm{L}}
$$

