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Characteristic equation
Use Laplace impedances, manipulate your circuit equation(s) into one equation of this form: 

May be Iin or any forcing function May be IX or any desired variable/\..a 1 s2 .b 1 s k 1 V in( )s = .s2 .b s k V X( )s with NO denominator s terms

a1, b1, k1 coefficients may be zero s2 .b s k = 0 is the characteristic equation
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Find initial Conditions (vC and/or iL)

Find conditions of  just before time t = 0,  vC(0-) and iL(0-).  These will be the same just after time t = 0,  vC(0+) and iL(0+) 
and will be your initial conditions.
Use normal circuit analysis to find your desired variable: v X( )0 or i X( )0
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Find final conditions ("steady-state" or "forced" solution)
DC inputs: Inductors are shorts Capacitors are opens Solve by DC analysis v X( )∞ or i X( )∞
AC inputs: Solve by AC steady-state analysis using jω

X(t) may be replaced by vX(t), iX(t) or any desired variable in the equations below
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