

L•s

R

> open, or
> $\mathrm{i}_{\mathrm{L}}(0+)=\mathrm{i}_{\mathrm{L}}(0-)$

R

Inductor
$\mathrm{v}_{\mathrm{L}}=\mathrm{L} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i} \mathrm{L} \quad \mathrm{i}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{-\infty}^{\mathrm{t}} \quad{ }^{\mathrm{v}} \mathrm{L} d \mathrm{dt}$
Resistor
Resistor

$$
\mathrm{v}_{\mathrm{R}}=\mathrm{i}_{\mathrm{R}} \cdot \mathrm{R} \quad \quad \mathrm{i}_{\mathrm{R}}=\frac{{ }^{\mathrm{v}} \mathrm{R}}{\mathrm{R}}
$$

DC AC
open $\frac{1}{j \cdot \omega \cdot C}$
short $\quad j \cdot \omega \cdot L$

R
R

Characteristic equation

Use Laplace impedances, manipulate your circuit equation(s) into one equation of this form:

$$
\begin{aligned}
& \begin{array}{l}
\text { May be } \mathbf{I}_{\text {in }} \text { or any forcing function } \\
\left(\mathrm{a}_{1} \cdot \mathrm{~s}^{2}+\mathrm{b} \mathrm{~b}_{1} \cdot \mathrm{~s}+\mathrm{k}_{1}\right) \cdot \mathbf{V}_{\mathbf{i n}}(\mathrm{s})=\left(\mathrm{s}^{2}+\mathrm{b} \cdot \mathrm{~s}+\mathrm{k}\right) \cdot \mathbf{V}_{\mathbf{X}}{ }^{\text {May be } \mathbf{I}_{\mathbf{X}} \text { or any desired variable }} \text { with NO denominator } \mathrm{s} \text { terms } \\
\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{k}_{1} \text { coefficients may be zero }
\end{array} \mathrm{s}^{2}+\mathrm{b} \cdot \mathrm{~s}+\mathrm{k}=0 \quad \text { is the characteristic equation }
\end{aligned}
$$

Differential equation $\quad a_{1} \cdot \frac{d^{2}}{d t^{2}} v_{\text {in }}(t)+b_{1} \cdot \frac{d}{d t} v_{i n}(t)+k_{1} \cdot V_{i n}(t)=\frac{d^{2}}{d t^{2}} v_{X}(t)+b \cdot \frac{d}{d t} v X^{(t)}+k \cdot v_{X}(t)$
$\begin{aligned} & \text { Transfer function } \\ & \text { Rearrange circuit equation to: } \mathbf{H}(\mathrm{s})=\frac{\text { output }}{\text { input }}=\frac{\mathbf{v}_{\mathbf{X}^{(s)}}}{\mathbf{V}_{\mathbf{i n}}{ }^{(s)} \mid}=\frac{\mathrm{a}_{1} \cdot \mathrm{~s}^{2}+\mathrm{b}_{1} \cdot \mathrm{~s}+\mathrm{k}_{1}}{\mathrm{~s}^{2}+\mathrm{b} \cdot \mathrm{s}+\mathrm{k}}=\text { may be } \mathrm{I}_{\text {in }} \text { or any forcing function }\end{aligned}$
Complete solution
Solutions to the characteristic equation: $\mathrm{s}_{1}=-\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{b}^{2}-4 \cdot \mathrm{k}}}{2} \quad \mathrm{~s}_{2}=-\frac{\mathrm{b}}{2}-\frac{\sqrt{\mathrm{b}^{2}-4 \cdot \mathrm{k}}}{2}$
Find initial Conditions $\quad\left(\mathrm{v}_{\mathrm{C}}\right.$ and/or $\left.\mathrm{i}_{\mathrm{L}}\right)$
Find conditions of just before time $t=0, v_{C}(0-)$ and $i_{L}(0-)$. These will be the same just after time $t=0, v_{C}(0+)$ and $i_{L}(0+)$ and will be your initial conditions.
Use normal circuit analysis to find your desired variable: ${ }^{v} X^{(0)}$ or ${ }^{i} X^{(0)}$
Also find: $\frac{d}{d t} v X^{(0)}$ or $\frac{d}{d t} i X^{(0)}$ The trick to finding these is to see that: $\frac{d}{d t} v C^{(0)}=\frac{{ }^{i} C^{(0)}}{C} \quad$ and $\quad \frac{d}{d t} i^{(0)}=\frac{{ }^{v} L^{(0)}}{L}$
Find final conditions ("steady-state" or "forced" solution)
DC inputs: Inductors are shorts Capacitors are opens Solve by DC analysis ${ }^{\mathrm{v}} \mathrm{X}^{(\infty)}$ or ${ }^{\mathrm{i}} \mathrm{X}^{(\infty)}$
AC inputs: Solve by AC steady-state analysis using j ω
$\mathrm{X}(\mathrm{t})$ may be replaced by $\mathrm{v}_{\mathrm{X}}(\mathrm{t}), \mathrm{i}_{\mathrm{X}}(\mathrm{t})$ or any desired variable in the equations below
Overdamped $\quad \mathrm{b}^{2}-4 \cdot \mathrm{k}>0 \quad \mathrm{~s}_{1}$ and s_{2} are real and negative
$X(t)=X(\infty)+B \cdot e^{s_{1} \cdot t}+D \cdot e^{s_{2} \cdot t}$
$\mathrm{X}(0)=\mathrm{X}(\infty)+\mathrm{B}+\mathrm{D} \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{X}(0)=\mathrm{B} \cdot \mathrm{s}_{1}+\mathrm{D} \cdot \mathrm{s}_{2}$
Solve simultaneously for B and D
Critically damped $\mathrm{b}^{2}-4 \cdot \mathrm{k}=0 \quad \mathrm{~s}_{1}=\mathrm{s}_{2}=-\frac{\mathrm{b}}{2}=\mathrm{s} \quad \mathrm{s}_{1}$ and s_{2} are
$X(t)=X(\infty)+B \cdot e^{s \cdot t}+D \cdot t \cdot e^{s \cdot t} \quad$ real, equal and
$X(0)=X(\infty)+B$
so.. $B=X(0)-X(\infty)$
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{X}(0)=\mathrm{B} \cdot \mathrm{s}+\mathrm{D}$
so.. $D=\frac{d}{d t} X(0)-B \cdot s$

Underdamped $\quad \mathrm{b}^{2}-4 \cdot \mathrm{k}<0 \quad \mathrm{~s}_{1}=\alpha+\mathrm{j} \cdot \omega \quad \mathrm{s}_{2}=\alpha-\mathrm{j} \cdot \omega \quad \alpha$ is negative
$X(t)=X(\infty)+e^{\alpha \cdot t} \cdot(B \cdot \cos (\omega \cdot t)+D \cdot \sin (\omega \cdot t))$
$X(0)=X(\infty)+B$
so.. $\mathrm{B}=\mathrm{X}(0)-\mathrm{X}(\infty)$
$\frac{d}{d t} X(0)=B \cdot \alpha+D \cdot \omega$
so.. $D=\frac{\frac{-\mathrm{dt}}{} \mathrm{X}(0)-\mathrm{B} \cdot \alpha}{0}$

EE1050 Notes, Second Order Transients

