Notes. Second Order Transients

ECE 2210 A.Stolp 4/6/00, 3/16/07 final conditions Laplace DC AC Capacitor impedance initial conditions 1 open $\frac{1}{\mathbf{C} \cdot \mathbf{s}}$ short, or $j \cdot \omega \cdot C$ $v_{C}(0+) = v_{C}(0-)$ Inductor $v_{L} = L \frac{d}{dt} i_{L}$ $i_{L} = \frac{1}{L} \begin{vmatrix} c \\ c \\ v_{L} dt \end{vmatrix}$ <u>_</u>_____ L·s open, or short j·ω·L $i_{I}(0+) = i_{I}(0-)$ Resistor $v_R = i_R \cdot R$ $i_R = \frac{v_R}{R}$ $\neg \land \land \land$ R R R R Characteristic equation Use Laplace impedances, manipulate your circuit equation(s) into one equation of this form: May be I_{in} or any forcing function / May be I_X or any desired variable $(a_1 \cdot s^2 + b_1 \cdot s + k_1) \cdot \mathbf{V}_{in}(s) = (s^2 + b \cdot s + k) \cdot \mathbf{V}_{\mathbf{X}}'(s)$ with NO denominator s terms a1, b1, k1 coefficients may be zero $s^2 + b \cdot s + k = 0$ is the characteristic equation **Differential equation** $a_1 \cdot \frac{d^2}{dt^2} v_{in}(t) + b_1 \cdot \frac{d}{dt} v_{in}(t) + k_1 \cdot V_{in}(t) = \frac{d^2}{dt^2} v_X(t) + b \cdot \frac{d}{dt} v_X(t) + k \cdot v_X(t)$ **ransfer function** Rearrange circuit equation to: $\mathbf{H}(s) = \frac{\text{output}}{\text{input}} = \frac{\mathbf{V} \mathbf{X}(s)}{\mathbf{V} \mathbf{in}(s)} = \frac{a_1 \cdot s^2 + b_1 \cdot s + k_1}{s^2 + b \cdot s + k} = \text{transfer function}$ $s^2 + b \cdot s + k = 0$ Characteristic equation of the second sec Transfer function characteristic equation Complete solution Solutions to the characteristic equation: $s_1 = -\frac{b}{2} + \frac{\sqrt{b^2 - 4 \cdot k}}{2}$ $s_2 = -\frac{b}{2} - \frac{\sqrt{b^2 - 4 \cdot k}}{2}$ **Find initial Conditions** (v_C and/or i_L) Find conditions of just before time t = 0, $v_C(0)$ and $i_L(0)$. These will be the same just after time t = 0, $v_C(0)$ and $i_L(0)$ and will be your initial conditions. Use normal circuit analysis to find your desired variable: $v_{\mathbf{X}}(0)$ or $i_{\mathbf{X}}(0)$ Also find: $\frac{d}{dt}v_X(0)$ or $\frac{d}{dt}i_X(0)$ The trick to finding these is to see that: $\frac{d}{dt}v_C(0) = \frac{{}^1C^{(0)}}{C}$ and $\frac{d}{dt}i_L(0) = \frac{{}^vL^{(0)}}{T}$ Find final conditions ("steady-state" or "forced" solution) DC inputs: Inductors are shorts Capacitors are opens Solve by DC analysis $v_X(\infty)$ or $i_X(\infty)$ AC inputs: Solve by AC steady-state analysis using jo X(t) may be replaced by $v_{\rm X}(t),\,i_{\rm X}(t)$ or any desired variable in the equations below Overdamped $b^2 - 4 \cdot k > 0$ s_1 and s_2 are real and negative typical $X(t) = X(\infty) + B \cdot e^{s \cdot 1 \cdot t} + D \cdot e^{s \cdot 2 \cdot t}$ time $X(0) = X(\infty) + B + D$ $\frac{d}{dt}X(0) = B \cdot s_1 + D \cdot s_2$ Solve simultaneously for B and D <u>Critically damped</u> $b^2 - 4 \cdot k = 0$ $s_1 = s_2 = -\frac{b}{2} = s$ s_1 and s_2 are typical real, equal and time $X(t) = X(\infty) + B \cdot e^{s \cdot t} + D \cdot t \cdot e^{s \cdot t}$ negative $\frac{d}{dt}X(0) = B \cdot s + D \qquad \text{so.. } D = \frac{d}{dt}X(0) - B \cdot s$ $X(0) = X(\infty) + B$ so., B = $X(0) - X(\infty)$ $s_1 = \alpha + j \cdot \omega$ $s_2 = \alpha - j \cdot \omega$ α is negative $s_1 + D \cdot sin(\omega \cdot t)$ complex s_1 and s_2 typical Underdamped $b^2 - 4 \cdot k < 0$ $e^{\alpha \cdot t}$ α is negative $X(t) = X(\infty) + e^{\alpha \cdot t} (B \cdot \cos(\omega \cdot t) + D \cdot \sin(\omega \cdot t))$ $\frac{d}{dt}X(0) = B \cdot \alpha + D \cdot \omega \quad \text{so.. } D = \frac{\frac{d}{dt}X(0) - B \cdot \alpha}{C}$ time $X(0) = X(\infty) + B$ so.. B = $X(0) - X(\infty)$ ω

EE1050 Notes, Second Order Transients