1.6 Second-Order Transients

A circuit with both a capacitor and an inductor is like a mechanical system with both a mass and a spring. When there are two different types of energy-storage elements, the transient responses can be much more interesting than the simple exponential curves that we've seen so far. Many of these systems can oscillate or "ring" when a transient is applied. When you analyze a circuit with a capacitor and an inductor you get a second-order differential equation, so the transient voltages and currents are called second-order transients.

Series RLC circuit, traditional way: Look at the circuit at right. The same current flows through all three elements (i(t) or just i). That current will begin to flow after time t = 0, when the switch is closed. Using basic circuit laws:

\[V_{in} = v_R + v_L + v_C \]

\[v(t) = R + L \frac{d}{dt} i + \frac{1}{C} \int_{-\infty}^{t} i \, dt \]

Making the obvious substitutions.

The next step here would be to differentiate both sides of the equation, but we've been through this before with the RC circuit. If you're a little more clever, there's an easier way.

Make this substitution instead \(i = C \frac{d}{dt} v_C \), to get

\[V_{in} = R \frac{d}{dt} v_C + L \frac{d^2}{dt^2} v_C + v_C \]

Rearrange this equation to get

\[V_{in} = L \frac{d^2}{dt^2} v_C + R \frac{d}{dt} v_C + v_C \]

This is the classical second-order differential equation and it is solved just like the first-order differential equation, by guessing a solution of the right form and then finding the particulars of that solution.

Standard differential equation answer:

\[v_C(t) = A + B \cdot e^{st} \]

Note: It will turn out that there will be two s’s (s₁ and s₂), and two B’s (B and D) for the second-order solution. For now I’ll leave out that added complexity.

Differentiate:

\[\frac{d}{dt} v_C = B \cdot s \cdot e^{st} \]

And again:

\[\frac{d^2}{dt^2} v_C = B \cdot s^2 \cdot e^{st} \]

Substitute these back into the original equation:

\[\frac{V_{in}}{L} = \frac{d^2}{dt^2} v_C + \frac{R}{L} \frac{d}{dt} v_C + \frac{1}{L} v_C \]

\[= B \cdot s^2 \cdot e^{st} + \frac{R}{L} B \cdot s \cdot e^{st} + \frac{1}{L} A \]

We can separate this equation into two parts, one which is time dependent and one which is not. Each part must still be an equation.

Time independent (forced) part:

\[V_{in} = A \]

\[A = V_{in} = \text{final condition} = v_C(\infty) \]

just like before

Time dependent (transient) part:

\[0 = B \cdot s^2 \cdot e^{st} + \frac{R}{L} B \cdot s \cdot e^{st} + \frac{1}{L} B \cdot e^{st} \]

Divide both sides by \(B \cdot e^{st} \) to get:

\[0 = s^2 + \frac{R}{L} s + \frac{1}{L} \]

= characteristic equation

This equation is important. It is called the characteristic equation and we'll need to find one like it for every second-order circuit that we analyze. Luckily, there's a much easier way to get it, using impedances similar to those we used in phasor analysis. I'll talk about that in the next section, in the meantime, let's continue with this problem.
Once you have the characteristic equation

\[s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \]

The characteristic equation is solved using the quadratic equation, recall:

\[a \cdot x^2 + b \cdot x + c = 0 \]

there are two solutions

\[x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \]

and

\[x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \]

Solutions to the characteristic equation:

- if \(R \cdot L < 0 \), then \(s_1 \) and \(s_2 \) are both real and \(s_1 \neq s_2 \) and our guessed solution \(v_C(t) = A + B \cdot e^{s_1t} \).

This results in three possible types of solutions, depending on what's under the radical, +, -, or 0.

Notice also that there are two \(s \) values (\(s_1 \) and \(s_2 \)) and that leads to two two \(B \)'s (we'll call them \(B \) and \(D \)).

Overdamped The part under the radical is +

\[\left(\frac{R}{L} \right)^2 - \frac{4}{L \cdot C} > 0 \]

then \(s_1 \) and \(s_2 \) are both real and \(s_1 \neq s_2 \) and our guessed solution \(v_C(t) = A + B \cdot e^{s_1t} \).

will become \(v_C(t) = v_C(\infty) + B \cdot e^{s_1t} + D \cdot e^{s_2t} \) and is simply the combination of two exponentials.

Also both \(s_1 \) and \(s_2 \) will always be negative (unless you find a negative \(R \), \(C \), or \(L \)), meaning the exponential parts will decay with time and are thus transient.

This is the overdamped case, like a class of students on a Monday morning. Pretty dull and soon to be asleep.

Underdamped The part under the radical is -

\[\left(\frac{R}{L} \right)^2 - \frac{4}{L \cdot C} < 0 \]

then \(s_1 \) and \(s_2 \) are both complex and can be expressed as

\[s_1 = \alpha + j\omega \quad \text{and} \quad s_2 = \alpha - j\omega \]

Well, if you start putting complex numbers in exponentials, what do you get? Euler's equations show that you'll get sines and cosines. In this case it's much easier to rephrase the guessed solution like this.

\[v_C(t) = v_C(\infty) + e^{\alpha t} \left(B_2 \cdot \cos(\omega t) + D_2 \cdot \sin(\omega t) \right) \]

This form can be derived directly from \(v_C(t) = A + B \cdot e^{s_1t} + D \cdot e^{s_2t} \) using Euler's equation, \(e^{j\theta} = \cos(\theta) + j \cdot \sin(\theta) \), but we won't bother to here.

In fact, although \(B_2 \) and \(D_2 \) are not the same as \(B \) and \(D \), I'll drop the "2" subscripts because we'll never actually need to convert between these two forms and the extra subscripts just become annoying.

So:

\[v_C(t) = v_C(\infty) + e^{\alpha t} \left(B \cdot \cos(\omega t) + D \cdot \sin(\omega t) \right) \]

\(\alpha \) and \(\omega \) come from the \(s_1 \) and \(s_2 \) solutions to the characteristic equation. \(\omega \) is frequency at which the underdamped circuit will "ring" or "oscillate" in response to a transient. \(\alpha \) sets the decay rate of that oscillation.

Because \(\alpha \) will always be negative the \(e^{\alpha t} \) term insures that the transient ringing dies out in time.

This is the underdamped case, like students on spring break in Fort Lauderdale.

Natural Frequency and the Damping Ratio

These are commonly used terms to describe the underdamped response in a normalized way, similar to the \(\tau \) used to describe first-order transient responses.

The "natural frequency" is defined as:

\[\omega_n = \sqrt{\frac{1}{L \cdot C}} \]

It is the frequency that the system would oscillate at if there were no damping (\(R = 0 \) in our case)

The damping ratio is defined as:

\[\zeta = \frac{\alpha}{\omega_n} \] \((\zeta \) is zeta)

for this case: \(\omega_n = \frac{1}{\sqrt{L \cdot C}} \)

Transients p. 1.10
Critically damped The part under the radical is 0

\[
\left(\frac{R}{L}\right)^2 - \frac{4}{L C} = 0
\]

then \(s_1\) and \(s_2\) are both real and exactly the same. Now our guessed solution must be
modified to

\[
v_C(t) = v_C(\infty) + B \cdot e^{s_1 t} + D \cdot e^{s_2 t}
\]

and can result in a single overshoot.

This is actually a trivial case since it relies on an exact equality which will never happen in reality. The best use of the critically damped case is as a conceptual border between the over- and under-damped cases.

RLC examples

Let's use some component values in the RLC circuit and see what happens.

Overdamped Example

\[
\left(\frac{R}{L}\right)^2 - \frac{4}{L C} > 0 \quad s_1 \text{ and } s_2 \text{ are real and negative, overdamped.}
\]

\[
s_1 = \frac{R}{2L} + \frac{1}{2} \sqrt{\left(\frac{R}{L}\right)^2 - \frac{4}{L C}}
\]

\[
s_2 = \frac{R}{2L} - \frac{1}{2} \sqrt{\left(\frac{R}{L}\right)^2 - \frac{4}{L C}}
\]

\[
v_C(t) = v_C(\infty) + B \cdot e^{s_1 t} + D \cdot e^{s_2 t}
\]

(As an example, the form is the same for all variables in this circuit)

Final conditions

REDRAW the circuit with the inductor as a short and the capacitor as an open.

\[
V_{in} = 12 \cdot V \quad i_L(\infty) = 0
\]

\[
v_C(\infty) = \text{final condition} = 12 \cdot V
\]

The capacitor will eventually charge up to \(V_{in}\).

Initial conditions

REDRAW the circuit before the switch changes. Find two initial conditions, \(i_L(0-)\) and \(v_C(0-)\).

\[
v_R(0-) = i(0-)R = 0
\]

\[
i_L(0-) = i_L(0+)
\]

\[
v_C(0-) = 0 = v_C(0+)
\]

\(i_L\) and \(v_C\) **cannot change instantly**, so cannot change the instant the switch changes.

Pretty easy in this case

(assuming no initial charge)
REDRAW the circuit again just after the switch changes. Show the inductor as a current source of \(i_L(0) \) (same as \(i_L(0^-) \)) and the capacitor as a voltage source of \(v_C(0) \) (same as \(v_C(0^-) \)). Find two more initial conditions, \(v_L(0) \) and \(i_C(0) \). Both \(v_L(0) \) or \(i_C(0) \) can change instantly, so you must find them from \(i_L(0) \) and \(v_C(0) \).

\[v_L(0) = 12V \]
\[i_L(0) = 0 \]
\[v_C(0) = 0 \]

Rearrange the basic equations for inductors and capacitors to find the initial slopes from \(v_L(0) \) or \(i_C(0) \).

\[v_L(t) = L \frac{di_L}{dt} \]
\[i_C(t) = C \frac{dv_C}{dt} \]

<table>
<thead>
<tr>
<th>(\frac{di_L(0)}{dt} = \frac{v_L(0)}{L})</th>
<th>(\frac{di_C(0)}{dt} = \frac{i_C(0)}{C})</th>
</tr>
</thead>
</table>

In this case

\[\frac{12V}{L} = 600 \text{ A/sec} \]

Note: You will need only the first one if you are looking for \(i_L(t) \).

You will need only the second one if you are looking for \(v_C(t) \).

You may need both if you are looking for any other variable in the circuit.

Other variables can usually be found most easily from \(i_L(t) \) and/or \(v_C(t) \).

To Find \(v_C(t) \)

At time \(t = 0 \)

\[v_C(0) = v_C(\infty) + B + D = 0 \]

\[0 = 12 \cdot V + B + D \]

Rearranging: \(D = -12 \cdot V - B \)

This equation has two unknowns. The initial slope will give us the needed second equation.

Differentiate the solution:

\[v_C(t) = v_C(\infty) + B \cdot e^{s_1 \cdot t} + D \cdot e^{s_2 \cdot t} \]

\[\frac{dv_C(t)}{dt} = 0 + B \cdot s_1 \cdot e^{s_1 \cdot t} + D \cdot s_2 \cdot e^{s_2 \cdot t} \]

At time \(t = 0 \):

\[\frac{dv_C(0)}{dt} = B \cdot s_1 + D \cdot s_2 \]

From initial conditions, above:

\[\frac{dv_C(0)}{dt} = \frac{i_C(0)}{C} = 0 \text{ V/sec} \]

Combining:

\[0 \text{ V/sec} = B \cdot s_1 + D \cdot s_2 \]

The second equation!

Solve simultaneously for \(B \) and \(D \):

\[0 \text{ V/sec} = B \cdot s_1 + (-12 \cdot V - B) \cdot s_2 \]

\[B = \frac{12 \cdot V}{s_2(s_1 - s_2)} = -60 \cdot V \]

\[D = -12 \cdot V - B = -12 \cdot V - 60 \cdot V = 48 \cdot V \]
recall the solution: \[v_C(t) = v_C(\infty) + B \cdot e^{-t} + D \cdot e^{2t} \]

Substitute everything back in:

\[v_C(t) : = 12 \cdot V - 60 \cdot V \cdot e^{\frac{-2000}{t}} + 48 \cdot V \cdot e^{\frac{-2500}{t}} \]

Notice that this is not a simple exponential curve, although admittedly it's not much more interesting.

To Find \(i_L(t) \) or \(i_R(t) \) or \(i_C(t) \) which all the same \(i(t) \).

\[i(t) = i(\infty) + B \cdot e^{-t} + D \cdot e^{2t} \]

From final and initial conditions

\[i(0) = i(\infty) + B + D = 0 = 0 + B + D \]

\[D = - B \]

\[\frac{d}{dt} i(0) = B \cdot s_1 + D \cdot s_2 = \frac{12 \cdot V}{L} = 600 \cdot \frac{A}{s} \]

Solve simultaneously for \(B \) and \(D \)

\[\begin{align*}
B &= \frac{\left(\frac{12 \cdot V}{L}\right)}{s_1 - s_2} = 1.2 \cdot A \\
D &= - B = - 1.2 \cdot A
\end{align*} \]

Substitute back in:

\[i(t) : = 1.2 \cdot e^{\frac{-2000}{t}} - 1.2 \cdot e^{\frac{-2500}{t}} \cdot A \]

However you get to it, at least this curve is slightly more interesting than the \(v_C(t) \).

We could have found the same result from \(v_C(t) \), using that to find \(i_L(t) \):

\[i_C(t) = C \cdot \frac{d}{dt} v_C(t) = C \cdot \frac{d}{dt} \left(12 \cdot V - 60 \cdot V \cdot e^{\frac{-2000}{t}} + 48 \cdot V \cdot e^{\frac{-2500}{t}} \right) \]

\[\begin{align*}
&= \left(-60 \cdot V\right) \cdot \frac{2000}{s} \cdot e^{\frac{-2000}{t}} + C \cdot 48 \cdot V \cdot \left(\frac{25}{s}\right) \cdot e^{\frac{-2500}{t}} \\
&= 1.2 \cdot A \quad C \cdot 48 \cdot V \cdot \left(\frac{25}{s}\right) = -1.2 \cdot A \quad \text{and} \quad i(t) = 1.2 \cdot e^{\frac{-2000}{t}} - 1.2 \cdot e^{\frac{-2500}{t}} \cdot A
\end{align*} \]
Underdamped Example

\[R := 10\,\Omega \quad L := 20\,\text{mH} \quad C := 10\,\mu\text{F} \]

\[s_1 := \frac{R}{2L} + \frac{1}{2} \sqrt{\left(\frac{R}{L}\right)^2 - \frac{4}{L/C}} \quad s_2 := \frac{R}{2L} - \frac{1}{2} \sqrt{\left(\frac{R}{L}\right)^2 - \frac{4}{L/C}} \]

\[s_1 = -250 + 2.222 \times 10^3\,\text{j}\,\text{sec}^{-1} \]

\[\omega := \text{Im}(s_1) \quad \omega = 2222\,\text{rad/sec} \]

\[\alpha := \frac{-250}{1}\,\text{sec}^{-1} \]

The final and initial conditions are the same as before, since they did not depend on \(R \) and \(R \) is the only component that is different.

Let's find the current again this time.

\[i(t) = i(\infty) + e^{\alpha t}(B \cdot \cos(\omega t) + D \cdot \sin(\omega t)) \quad \text{(underdamped this time)} \]

\[i(0) = i(\infty) + B, \quad 0 = 0 + B \quad B := 0\,\text{A} \]

Differentiate the solution:

\[\frac{di(t)}{dt} = \alpha e^{\alpha t}(B \cdot \cos(\omega t) + D \cdot \sin(\omega t)) + e^{\alpha t}(-B \cdot \sin(\omega t) \cdot \omega + D \cdot \cos(\omega t) \cdot \omega) \]

At time \(t = 0 \):

\[\frac{di(0)}{dt} = B \cdot \alpha + D \cdot \omega \]

Solve for \(D \):

\[D = \frac{\frac{di(0) - B \cdot \alpha}{\omega}}{\frac{12\,\text{V}}{L}} \]

\[D = \frac{\frac{12\,\text{V} - B \cdot \alpha}{\omega}}{\frac{L}{\omega}} = 0.27\,\text{A} \]

Substitute back in:

\[i(t) := e^{\alpha t}(0.27 \cdot \sin(\omega t)) \quad \text{A} \]

Now this is much more interesting.
Critically Damped Example

First we have to figure out how to get this case

Change R’s value to create critical damping:

$$s_1 = \frac{R}{2L} + \frac{1}{2} \sqrt{\frac{R}{L}} - \frac{4}{L C} = 0 \quad R := 2 \sqrt{\frac{L}{C}} \quad R = 89.44271909999159 \cdot \Omega$$

(exactly)

$$s_1 = -2236 \cdot \text{sec}^{-1} \quad s_2 = -2236 \cdot \text{sec}^{-1}$$

$$i(t) = i(\infty) + B \cdot e^{s_1 t} + D \cdot t \cdot e^{s_2 t} \quad i(\infty) = \text{final condition} = 0 \cdot \text{A} \quad \text{Capacitor will charge up and current will stop.}$$

$$i(0) = i(\infty) + B = 0 \quad , \quad B = 0$$

$$\frac{d}{dt}i(0) = B \cdot s_1 e^{s_1 t} + D \cdot s_2 e^{s_2 t} + D \cdot t \cdot s_2 e^{s_2 t} = B \cdot s_1 + D = \frac{12 \cdot V}{L} \quad \text{Since all initial voltage will be across inductor.}$$

Solve for D:

$$D = \frac{12 \cdot V}{L} = 600 \cdot \frac{A}{\text{sec}}$$

Substitute back in:

$$i(t) := 600 \cdot \frac{A}{\text{sec}} \cdot e^{\frac{2236}{\text{sec}^2} t}$$

if you notice a remarkable similarity with the overdamped case, that’s common for critical damping.
1.7 The Easy Way to get the Characteristic Equation

Recall from your Ordinary Differential Equations class, the Laplace transform method of solving differential equations. The Laplace transform allowed you to change time-domain functions to frequency-domain functions. We’ve already done this for steady-state AC circuits. We changed functions of \(t \) into functions of \(j\omega \). That was the frequency domain. Laplace let’s us do the same sort of thing for transients. The general procedure is as follows.

1) Transform your forcing functions into the frequency domain with the Laplace transform.
2) Solve your differential equations with plain old algebra, where:
 \[
 \frac{d}{dt} \text{ operation can be replaced with } s, \quad \text{and} \quad \int \text{dt} \text{ can be replaced by } \frac{1}{s}
 \]
3) Transform your result back to the time domain with the inverse Laplace transform.

Step 1 isn't too bad, but step 3 can be a total pain without a good computer program to do the job. However, step 2 sounds great. It turns out that we can use step 2 alone and still learn a great deal about our circuits and other systems without ever bothering with steps 1 and 3.

First remember from your study of Laplace that differentiation in the time domain was the same as multiplication by \(s \) in the frequency domain. That's really all we need and we're off and running.

\[
V_{L}(t) = L \frac{d}{dt} i_{L}(t) \quad \rightarrow \quad V_{L}(s) = L \cdot s \cdot I_{L}(s) \quad \text{and} \quad i_{C}(t) = C \frac{d}{dt} V_{C}(t) \quad \rightarrow \quad I_{C}(s) = C \cdot s \cdot V_{C}(s)
\]

Leading to the Laplace impedances: \(Ls \) for an inductor and \(\frac{1}{Cs} \) for a capacitor.

That's it, now we can use these impedances just like the \(j\omega \) impedances, and we can use all the tools developed for DC. And with Laplace we don't even have to mess with complex numbers.

Look what happens to the RLC circuit now.

Pick any dependent variable (\(I(s) \), \(V_{R}(s) \), \(V_{L}(s) \), or \(V_{C}(s) \)) and write a transfer function, which is a ratio of the dependent variable to the input (\(V_{in}(s) \)), like this:

\[
V_{in}(s) = I(s) \cdot \frac{1}{C \cdot s + R + L \cdot s}
\]

Transfer function = \(H(s) = \frac{I(s)}{V_{in}(s)} = \frac{1}{C \cdot s + R + L \cdot s} \)

Manipulate this transfer function into this form:
\[
a \cdot \frac{1 \cdot s^2 + b \cdot s + 1}{s^2 + b \cdot s + k}
\]

One polynomial divided by another.

\[
\frac{I(s)}{V_{in}(s)} = \frac{1 \cdot (C \cdot s)}{(1 + R + L \cdot s \cdot (C \cdot s))} = \frac{1}{L \cdot s} \quad \text{in the correct form.}
\]

Set the denominator to 0 and you get the characteristic equation:
\[
s^2 + \frac{R}{L} \cdot s + \frac{1}{L \cdot C} = 0
\]

At this point you just proceed with the solution like you did before; Solve the characteristic equation to find \(s_1 \) and \(s_2 \). Decide which case you have (over-, under-, or critically damped). Use the two initial conditions, \(i_{L}(0) \) and \(v_{C}(0) \) to find the initial condition and the initial slope of your variable of interest, then use those to find the constants \(B \) and \(D \).

Differential equation from the transfer function

You can also use the transfer function to go back and find the differential equation, just replace each \(s \) with a \(\frac{d}{dt} \) and go back to functions of \(t \).

\[
\frac{d}{dt} \quad \text{and go back to functions of } t. \quad \frac{1}{L} \cdot \frac{d}{dt} V_{in}(t) = \left(\frac{d^2}{dt^2} i(t) + \frac{R}{L} \cdot \frac{d}{dt} i(t) + \frac{1}{L \cdot C} \cdot i(t) \right)
\]

Actually this is a pretty useless thing to do.