
 1.6 Second-Order Transients  ECE 2210 b
A circuit with both a capacitor and an inductor is like a mechanical system with both a mass and  a spring.  When there are two different types of energy-storage elements, the transient responses  can be much more interesting than the simple exponential curves that we've seen so far.  Many of  these systems can oscillate or "ring" when a transient is applied.  When you analyze a circuit  with a capacitor and an inductor you get a second-order differential equation, so the transient  voltages and currents are called second-order transients.

v R t = 0 R Series RLC circuit, traditional way:   Look at the circuit at right.  The same current  flows through all three elements ( i(t) or just i ).  That current will begin to flow after time  t = 0 , when the switch is closed.  Using basic circuit laws:
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The next step here would be to differentiate both sides of the equation, but we've been  through this before with the RC circuit.  If you're a little more clever, there's an easier way. 
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v C This is the classical second-order differential equation and it is solved just like the first-order differential equation,  by guessing a solution of the right form and then finding the particulars of that solution. Standard differential equation answer: v C( )t = A .B e
.s t  Note: It will turn out that there will be two 

s 's (s1 and s2 ), and two B 's (B and D ) for  the second-order solution.  For now I'll  leave out that added complexity.
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A We can separate this equation into two parts, one which is time dependent and one which is not.  Each part must  still be an equation. Time independent (forced) part: V in= A , A = V in= final condition = v C( )∞ just like before Time dependent (transient) part: 0 = ..B s2 e

.s t ...R

L
B s e
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Divide both sides by .B e
.s t  to get: 0 = s2 .R

L
s

1
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 =  characteristic equation This equation is important.  It is called the characteristic equation and we'll need to find one like it for every  second-order circuit that we analyze.  Luckily, there's a much easier way to get it, using impedances similar to  those we used in phasor analysis.  I'll talk about that in the next section, in the meantime, let's continue with this  problem.   Transients  p. 1.9



Once you have the characteristic equation
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The characteristic equation is solved  using the quadratic equation, recall : characteristic equation: s2 .R

L
s

1
.L C

= 0
if .a x2 .b x c  = 0 Solutions to the characteristic equation:

there are two solutions

s 1 =
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x 1=
b b2 ..4 a c

.2 a

and
This results in three possible types of solutions, depending on  what's under the radical, +, -, or 0. 

x 2=
b b2 ..4 a c

.2 a
_________________________________ Notice also that there are two s values (s1 and s2 ) and that leads to two two B 's (we'll  call  them B and D) 

Overdamped  The part under the radical is +

if
R

L

2 4
.L C

 > 0 then s1 and s2 are both real and s 1 s 2 and our guessed solution v C( )t = A .B e
.s t

will become v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t  and is simply the combination of two exponentials.

Also both s1 and s2  wil l always be negative (unless you find a negative R, C , or L), meaning the exponential  parts will decay with time and are thus transient.   This is the overdamped case, like a class of students on a Monday morning.  Pretty dull and soon to be asleep.

Underdamped  The part under the radical is -

if
R

L

2 4
.L C

 < 0 then s1 and s2 are both complex and and can be expressed as

s 1 = α .j ω and s 2 = α .j ω

Well, if you start putting complex numbers in exponentials, what do you get?  Euler's equations show that  you'll get sines and cosines.  In this case its much easier to rephrase the guessed solution like this.

v C( )t = v C( )∞ .e
.α t .B 2 cos( ).ω t .D 2 sin( ).ω t

This form can be derived directly from v C( )t = A .B e
.s 1 t .D e

.s 2 t

using Euler's equation, e
.j θ = cos( )θ .j sin( )θ  ,  but we won't bother to here. 

In fact, although B2 and D2 are not the same as B and D , I'll drop the " 2" 
subscripts because we'll never actually need to convert between these two  forms and the extra subscripts just become annoying. So: v C( )t = v C( )∞ .e

.α t ( ).B cos( ).ω t .D sin( ).ω t

α and ω come from the s1 and s2  solutions to the characteristic equation.  ω is frequency at which the  underdamped circuit will "ring" or "oscillate" in response to a transient.  α  sets the decay rate of that oscillation.  

Because α will always be negative the eat  term insures that the transient ringing dies out in time. This is the underdamped case, like students on spring break in Fort Lauderdale.

Natural Frequency and the Damping Ratio

These are commonly used terms to describe the underdamped response in a normalized way, similar to 
the τ  used to decribe first-order transient responses. The "natural frequency" is defined as: ω n = α2 ω2 It is the frequency that the system would oscillate at if there were no damping ( R = 0   in our case) for this case: ω n =

1

.L C The damping ratio is defined as: ζ =
α

ω n
(ζ  is zeta) Transients  p. 1.10



Critically damped The part under the radical is 0 

if
R

L

2 4
.L C

 = 0 then s1 and s2  are both real and exactly the same.   Now our guessed solution must be 

modified to v C( )t = v C( )∞ .B e
.s 1 t ..D t e

.s 2 t  and can result in a single overshoot. This is actually a trivial case since it relies on an exact equality which will never happen in reality.  The best use  of the critically damped case is as a conceptual border between the over- and under-damped cases. 

RLC examples Let's use some component values in the RLC circuit and see what happens.

Overdamped Example  t = 0 R .90 Ω

R

L

2 4
.L C

 > 0 s1 and s2  are real and negative, overdamped.

V in
.12 V

L .20 mH
s 1

R
.2 L

.1

2

R

L

2 4
.L C

=s 1 2000 sec 1

C .10 µF
s 2

R
.2 L

.1

2

R

L

2 4
.L C

=s 2 2500 sec 1

i( )t

v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t (As an example, the form is the same for all  variables in this circuit)

Final conditions
REDRAW the circuit with the 
inductor as a short and the  capacitor as an open.

=V in 12 V iL(∞ ) = 0

v C( )∞  = final condition = .12 V

The capacitor will eventually charge up to Vin.

Initial conditions
REDRAW the circuit before the switch  changes.  Find two initial  conditions,
                iL (0-) and vC (0-).

vR (0-) =  i (0-)R = 0 

iL (0-) = 0 = iL (0+) 

iL and vC cannot change instantly, so  cannot change the instant the switch changes.

vC (0-) = 0 = vC (0+)

Pretty easy in this case  (assuming no initial charge)  Transients  p. 1.11



 REDRAW the circuit again just after the switch changes.  Show the inductor as a current source of iL (0)  (same 
as iL (0-) ) and the capacitor as a voltage source of vC (0)  (same as vC (0-) ).  Find two more initial conditions,  vL (0) 
and iC (0).  Both vL (0) or iC (0) can change instantly, so you must find them from iL (0) and vC (0).

+

vR (0) = iL (0)R = 0V

 -
+

=V in 12 V
iL (0) = 0 vL (0) = 12V

V in iL (0) = 0
 -

In this particular case, the circuit  can be redrawn again for clarity:
vC (0) = 0

vC (0) = 0
iC (0)  = iL (0) = 0

Again, pretty easy in this case

Rearrange the basic equations for inductors and capacitors to find the initial slopes from vL (0) or iC (0).

Rearrange v L = .L d

dt
i L to d

dt
i L( )0 =

v L( )0

L
= =

.12 V

L
600

A

sec
In this case

or, i C = .C d

dt
v C to d

dt
v C( )0 =

i C( )0

C
= =

.0 A

C
0

V

sec Note: You wil l need only the first one if you are looking for iL (t). 
You will need only the second one if you are looking for vC (t).  You may need both if you are looking for any other variable in the circuit.

  Other variables can usually be found most easily from iL (t)  and/or vC (t).  
To Find vC (t) 

At time  t = 0 v C( )0 = v C( )∞ B D = 0

0 = .12 V B D  Rearranging: D = .12 V B This equation has two unknowns.  The initial slope will give us the needed second equation.  Differentiate the solution: v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t to get: d

dt
v C( )t = 0 ..B s 1 e

.s 1 t ..D s 2 e
.s 2 t

At time  t = 0: d

dt
v C( )0 = .B s 1

.D s 2 From initial conditions, above: d

dt
v C( )0 =

i C( )0

C
= .0

V

sec Combining: .0
V

sec
= .B s 1

.D s 2  The second equation!

Solve simultaneously for B and D: .0
V

sec
= .B s 1

.( ).12 V B s 2 B = =.s 2
.12 V

s 1 s 2
60 V Transients  p. 1.12 D = .12 V B = =.12 V .60 V 48 V



 recall the solution: v C( )t = v C( )∞ .B e
.s 1 t .D e

.s 2 t Substitute everything back in back in: v C( )t .12 V ..60 V e
.2000

sec
t

..48 V e
.2500

sec
t

0 1 2 3 4

2

4

6

8

10

12

14Notice that this is not a simple 
exponential curve, although 
admittedly it's not much more  interesting.

v C( )∞

= .12 V

v c( )t  time (ms)

To Find iL (t) or iR (t) or iC (t) which all the same i (t). 
i( )t = i( )∞ .B e

.s 1 t .D e
.s 2 t

From final and initial conditions

i( )0 = i( )∞ B D = 0 = 0 B D D = B

d

dt
i( )0 = .B s 1

.D s 2 = =
.12 V

L
600

A

sec

Solve simultaneously for B and D
.12 V

L
= .B s 1

.B s 2 B = =

.12 V

L

s 1 s 2
1.2 A

D = B = .1.2 A Substitute back in: i( )t .1.2 e
.2000

sec
t

.1.2 e
.2500

sec
t

A

0 1 2 3 4

0.05

0.1However you get to it, at least 
this curve is slightly more 
interesting than the vC (t). i( )t (A)  time (ms)

We could have found the same result from vC (t), using that to find iL (t): 
i C( )t = .C d

dt
v C( )t = .C d

dt
.12 V ..60 V e

.2000

sec
t

..48 V e
.2500

sec
t

= ...C ( ).60 V
2000

sec
e

.2000

sec
t

....C 48 V
25

sec
e

.2500

sec
t

=..C ( ).60 V
2000

sec
1.2 A =...C 48 V

2500

sec
1.2 A and i ( )t .1.2 e

.2000

sec
t

.1.2 e
.2500

sec
t

same  Transients  p. 1.13



Underdamped Example

R .10 Ω L .20 mH C .10 µF  t = 0 =R 10 Ω

s 1
R
.2 L

.1

2

R

L

2 4
.L C

=s 1 250 +2.222 103 j sec 1

V in
.12 V

s 2
R
.2 L

.1

2

R

L

2 4
.L C

=s 2 250 2.222 103 j sec 1 =L 20 mH

α .250
1

sec
ω Im s 1 =ω 2222

rad

sec =C 10 µF

i( )t
The final and initial conditions are the same as before, since they did 
not depend on R and R  is the only component that is different. Let's find the current again this time.

0
i( )t = i( )∞ .e

.α t ( ).B cos( ).ω t .D sin( ).ω t  (underdamped this time)

i( )0 = i( )∞ B,

0 = 0 B B .0 A Differentiate the solution: i( )t = i( )∞ .e
.α t ( ).B cos( ).ω t .D sin( ).ω t to get: d

dt
i( )t = ..α e

.α t ( ).B cos( ).ω t .D sin( ).ω t .e
.α t ( )..B sin( ).ω t ω ..D cos( ).ω t ω

At time  t = 0: d

dt
i( )0 = .B α .D ω Solve for D: D =

d

dt
i( )0 .B α

ω

d

dt
i( )0 =

.12 V

L D = =

.12 V

L
.B α

ω
0.27 A Substitute back in: i( )t .e

.α t ( ).0.27 sin( ).ω t A

0 2 4 6 8 10 12 14 16 18 20

0.2

0.1

0.1

0.2

0.3
i( )t (A)

.0.27 e
.α t  time (ms) Now this is much more interesting. Transients  p. 1.14



Critically Damped Example

First we have to figure out how to get this case

Change R 's value to create critical damping:
R

L

2 4
.L C

 = 0 R .2
L

C
=R 89.44271909999159 Ω (exactly)

s 1
R
.2 L

.1

2

R

L

2 4
.L C

=s 1 2236 sec 1 s 2
R
.2 L

.1

2

R

L

2 4
.L C

=s 2 2236 sec 1

i( )t = i( )∞ .B e
.s 1 t ..D t e

.s 2 t
i( )∞  = final condition = .0 A  Capacitor will charge up and current will stop.

i( )0 = i( )∞ B= 0 , B = 0

d

dt
i( )0 = ..B s 1 e

.s 1 t .D e
.s 2 t ...D t s 2 e

.s 2 t
= .B s 1 D =

.12 V

L
 Since all initial voltage will be across inductor. Solve for D: D = =

.12 V

L
600

A

sec
 Substitute back in: i( )t ...600

A

sec
t e

.2236

sec
t

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

i( )t (A)

 time (ms) if you notice a remarkable similarity with the overdamped case, that's common for critical damping.

 Transients  p. 1.15



 1.7  The Easy Way to get the Characteristic Equation

Recall from your Ordinary Differential Equations class, the Laplace transform method of solving differential  equations.  The Laplace transform allowed you to change time-domain functions to frequency-domain functions.   We've already done this for steady-state AC circuits.  We changed functions of t into functions of jω .  That was the  frequency domain.  Laplace let's us do the same sort of thing for transients.  The general procedure is as follows. 1) Transform your forcing functions into the frequency domain with the Laplace transform. 2) Solve your differential equations with plain old algebra, where:

d

dt
operation can be replaced with s,          and dt can be replaced by

1

s 3) Transform your result back to the time domain with the inverse Laplace transform. Step 1 isn't too bad, but step 3 can be a total pain without a good computer program to do the job.  However, step  2 sounds great.  It turns out that we can use step 2 alone and still learn a great deal about our circuits and other  systems without ever bothering with steps 1 and 3.

First remember from your study of Laplace that differentiation in the time domain was the same as multiplication  by s in the frequency domain.  That's really all we need and we're off and running.

v L( )t = .L d

dt
i L( )t  ---> V L( )s = ..L s I L( )s and i C( )t = .C d

dt
v C( )t  ---> I C( )s = ..C s V C( )s Leading to the Laplace impedances: Ls for an inductor and

1

Cs
 for a capacitor.

That's it, now we can use these impedances just like the jω impedances, and we can use all the tools developed  for DC.  And with Laplace we don't even have to mess with complex numbers. Look what happens to the RLC circuit now. Pick any dependent variable ( I(s), VR (s), VL (s), or VC (s) ) and write a transfer function,  which is a ratio of the dependent variable to the input (Vin (s) ), like this:

V in( )s = .I( )s
1
.C s

R .L s Transfer function =  H(s) =
I( )s

V in( )s
=

1

1
.C s

R .L s Manipulate this transfer function into this form:
.a 1 s2 .b 1 s k 1

s2 .b s k One polynomial divided by another.

I( )s

V in( )s
=

.1 ( ).C s

( )1 R ..L s ( ).C s
=

.1

L
s

s2 .R

L
s

1
.L C

 in the correct form. Set the denominator to 0 and you get the characteristic equation: s2 .R

L
s

1
.L C

= 0

At this point you just proceed with the solution like you did before; Solve the characteristic equation to find s1 and s2.   Decide which case you have (over-, under-, or critically damped).  Use the two initial conditions, iL (0) and vC (0) to find 
the initial condition and the initial slope of your variable of interest, then use those to find the constants B and D.

Differential equation from the transfer function
You can also use the transfer function to go back and find the differential equation, just replace each s with a 

d

dt
 and go back to functions of t. .1

L

d

dt
V in( )t = d

d

2

2t
i( )t .R

L

d

dt
i( )t .1

.L C
i( )t Actually this is a pretty  useless thing to do. Transients  p. 1.16


