There are a number of lockers on the top floor of the MEB, near the ECE office (SE corner of MEB, rm 3280). These lockers have slots cut in their doors so that homework and lab notebooks can be dropped through the slots. Turn in your homework in the locker marked “ECE 2210/00 Homework”. Homework is due by 5:00 p.m..

The following problems are not meant to be hard. You should be able to do most of them in your head with no special formulas or calculations. In fact you should find them rather dumb and trivial. That's the point, I want to drill these concepts into your head so that you'll find them easy.

1. The figure at right shows a hydraulic system with a pump that converts rotational energy to fluid energy and two turbines which convert that energy back to rotational energy. Do NOT assume that the turbines are equal in size. This is a closed system containing an incompressible fluid with no places for that fluid to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. The volumetric fluid flows are indicated by the arrows.

\[I_1 = 0.01 \text{ m}^3/\text{s} \quad I_2 = 0.007 \text{ m}^3/\text{s} \]

\[I_3 = \quad I_4 = \quad I_5 = \quad I_6 = \quad \]

2. The figure at right shows an electrical circuit with a battery that converts chemical energy to electrical energy and two resistors which convert that electrical energy to heat energy. Do NOT assume that the resistors are equal in size. All electrical circuits are closed systems containing incompressible charges with no places for those charges to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. The electrical currents are indicated by the arrows.

\[I_1 = 0.01 \text{ A} \quad I_2 = 0.007 \text{ A} \]

\[I_3 = \quad I_4 = \quad I_5 = \quad I_6 = \quad \]

3. The figure at right shows a similar electrical circuit only now the electrical currents are indicated by the arrows next to the wires. This is a more common way to show the current flow because a little arrow in the wire is too easily confused with the electrical symbol for a diode. You'll learn about diodes later.

\[I_2 = 20 \text{ mA} \quad I_5 = 14 \text{ mA} \]

\[I_6 = \quad I_1 = \quad I_3 = \quad I_4 = \quad \]

4. \[I_3 = 0.004 \text{ m}^3/\text{s} \quad I_5 = 0.001 \text{ m}^3/\text{s} \quad I_4 = \quad \]

\[I_2 = \quad I_1 = \quad I_6 = \quad \]

\[I_7 = \quad I_8 = \quad \]
5. I_3 = 4.5 mA I_5 = 1.2 mA I_4 = _________
 I_2 = _________ I_1 = _________ I_6 = _________
 I_7 = _________ I_8 = _________

6. Again, a similar electrical circuit with the electrical current arrows in the more common position, next to the wires.

\[I_6 = 0.03 \text{ A} \quad I_7 = 0.08 \text{ A} \quad I_8 = _________ \]
\[I_1 = _________ I_2 = _________ I_3 = _________ \]
\[I_4 = _________ I_5 = _________ \]

7. \[I_9 = 0.04 \frac{\text{m}^3}{\text{s}} \quad I_1 = _________ I_2 = _________ \]
\[I_3 = _________ I_4 = _________ I_5 = _________ \]
\[I_6 = _________ I_7 = _________ I_8 = _________ I_7 = _________ I_10 = _________ \]

8. \[I_9 = 0.06 \text{ A} \quad I_1 = _________ I_2 = _________ \]
\[I_3 = _________ I_4 = _________ I_5 = _________ \]
\[I_6 = _________ I_7 = _________ I_8 = _________ I_7 = _________ I_10 = _________ \]

9. \[I_4 = 0.05 \frac{\text{m}^3}{\text{s}} \quad I_5 = 0.014 \frac{\text{m}^3}{\text{s}} \quad I_6 = 0.03 \frac{\text{m}^3}{\text{s}} \]
\[I_1 = _________ I_2 = _________ \]
\[I_3 = _________ I_7 = _________ \]
10. \[I_1 = \ldots \quad I_2 = \ldots \]
\[I_3 = \ldots \quad I_7 = \ldots \]

11. Careful here, there are now two pumps. Also, given the flow arrows shown, one or more of the flows must come out negative.

\[I_2 = 0.005 \text{ m}^3/\text{s} \quad I_6 = 0.03 \text{ m}^3/\text{s} \quad I_7 = 0.015 \text{ m}^3/\text{s} \]

\[I_1 = \ldots \quad I_3 = \ldots \]
\[I_4 = \ldots \quad I_5 = \ldots \]

12. What does a negative fluid flow physically mean?

13. \[I_1 = 0.01 \text{ A} \quad I_5 = 20 \text{ mA} \quad I_6 = 35 \text{ mA} \]
\[I_2 = \ldots \quad I_3 = \ldots \]
\[I_4 = \ldots \quad I_7 = \ldots \]

14. What does a negative electrical current physically mean?

15. \[I_4 = 0.05 \text{ m}^3/\text{s} \quad I_5 = 0.03 \text{ m}^3/\text{s} \quad I_7 = 0.045 \text{ m}^3/\text{s} \]
\[I_9 = 0.06 \text{ m}^3/\text{s} \]
\[I_1 = \ldots \]
\[I_2 = \ldots \quad I_3 = \ldots \]
\[I_6 = \ldots \quad I_8 = \ldots \]
\[I_{10} = \ldots \quad I_{11} = \ldots \]
16. \[I_1 := 100\text{-mA} \quad I_2 := 50\text{-mA} \quad I_3 := 30\text{-mA} \]

\[I_6 := 66\text{-mA} \]

\[I_4 = ______ \quad I_5 = ______ \]

\[I_7 = ______ \quad I_8 = ______ \]

\[I_9 = ______ \quad I_{10} = ______ \quad I_{11} = ______ \]

17. The figure at right shows the pressure differentials across elements in a hydraulic system. The side indicated by the + sign is the higher pressure side. Conversely, - indicates the lower pressure. \(\Delta P_S \) is the pressure difference supplied by the pump (S for Source). \(\Delta P_2 \) is the pressure difference driving the left turbine and \(\Delta P_4 \) is the pressure difference driving the right turbine. Assume no pressure losses or discontinuities in the pipes, joints, or corners; i.e. all connected pipes are at exactly the same pressure. Finally, the fluid has no mass, so gravity and Bernoulli can go take a hike.

\[\Delta P_S := 12 \text{ Pa} \]

\[\Delta P_2 = ______ \quad \Delta P_4 = ______ \]

Yes, I know that these are ridiculously low pressures for a hydraulic system.

18. The figure at right shows the voltage differentials across elements in an electrical circuit. The side indicated by the + sign is the higher voltage side. Conversely, - indicates the lower voltage. \(V_S \) is the voltage supplied by the battery. \(V_2 \) is the voltage across the left resistor and \(V_4 \) is the voltage across the right resistor. You may assume no voltage drops across any of the wires or connections in practically all electrical schematics; i.e. all connected wires are at exactly the same voltage (electrical potential).

\[V_S := 12\text{-V} \quad V_2 = ______ \quad V_4 = ______ \]

19. \[\Delta P_S := 400\text{-kPa} \quad \Delta P_1 := 180\text{-kPa} \quad \Delta P_3 := 100\text{-kPa} \]

\[\Delta P_5 = ______ \quad \Delta P_7 = ______ \]

20. \[V_1 := 10\text{-V} \quad V_5 := 3\text{-V} \quad V_7 := 2\text{-V} \]

\[V_S = ______ \quad V_3 = ______ \]
21. \(\Delta P_{S1} := 200\text{-kPa}\) \(\Delta P_{S2} := 150\text{-kPa}\)
\(\Delta P_{2} := 50\text{-kPa}\)
\(\Delta P_{6} := 60\text{-kPa}\)
\(\Delta P_4 = \ldots\)
\(\Delta P_7 = \ldots\)

22. \(V_{S1} := 6\text{-V}\)
\(V_{2} := 2\text{-V}\)
\(V_{6} := 2.4\text{-V}\)
\(V_{7} := 3.2\text{-V}\)
\(V_{S2} = \ldots\)
\(V_{4} = \ldots\)

23. \(\Delta P_{3} := 120\text{-kPa}\)
\(\Delta P_{4} := 80\text{-kPa}\)
\(\Delta P_{6} := 110\text{-kPa}\)
\(\Delta P_{S} = \ldots\)
\(\Delta P_{2} = \ldots\)
\(\Delta P_{5} = \ldots\)

24. What does a negative pressure difference physically mean?

25. \(V_{3} := 2.3\text{-V}\)
\(V_{5} := 0.5\text{-V}\)
\(V_{6} := 3.2\text{-V}\)
\(V_{S} = \ldots\)
\(V_{2} = \ldots\)
\(V_{4} = \ldots\)

26. Watch your + and - signs very carefully now.

27. Think about the current through the 2nd battery. What is happening to that battery?
ΔP_1 := 200-kPa \quad ΔP_2 := 1100-kPa
ΔP_3 := 600-kPa \quad ΔP_9 := 1800-kPa
ΔP_S = \underline{} \quad \DeltaP_4 = \underline{}
ΔP_5 = \underline{} \quad \DeltaP_6 = \underline{}
ΔP_{10} = \underline{}