ECE 2210 / 00 homework # 5

Thevenin & Norton equivalent circuits

1. For each of the circuits below, find and draw the Thevenin equivalent circuit.

- 2. For the circuit of problem 1a, find the voltage across R_L (V_L) and the current through R_L (I_L) using your Thevenin equivalent circuit.
- 3. For each of the circuits in problem 1, find and draw the Norton equivalent circuit.
- 4. For the circuit of problem 1b, find V_L and I_L using your Norton equivalent circuit.
- 5. For the circuit shown at right, use Thevenin's theorem to find the current through the 50 Ω resistor R₄.
- 6. For the circuit shown, use Norton's theorem to find the value of the current in R_5 . Hint: You can find I_N either by calculation of the open circuit voltage (V_{OC}) and R_N or by direct calculation of the short-circuit current (I_{SC}) , however, there is something about the values of the resistors which makes the second method easier than it would at first appear.

Source resistance

- 7. The terminal voltage of a car's battery drops from 12.5 V to 8.5 volts when starting. The starter motor draws 60 A of current.
 - a) Draw the voltage-source model (Thevenin equivalent) of this battery. Include the values of V_S and R_S.
 - b) Draw the current-source model (Norton equivalent) of this battery. Include the values of Is and Rs.
 - c) Which of these two models is more appropriate for the car battery?
 - d) What terminal voltage would you expect if this battery were being charged at 20 A?

Answers

1. a) 4.091·V ,	28.4·kΩ	b) 1.1·V , 18.3·Ω	2 . 1.69·V , 84.6·μA	
3. a) 0.144·mA ,	28.4·kΩ	b) 60·mA , 18.3·Ω	4. 3.16·mA, 1.042·V	5 . 1.88⋅mA
6. 0.19·A	7. a) V _S = 12	$.5 \cdot V \qquad R_{\rm S} = 0.0667 \cdot \Omega$	b) $I_{S} = 187.5 \cdot A$	$R_{S} = 0.0667 \cdot \Omega$
ECE 2210 / 00 homework # 5			c) Thevenin	d) 13.83·V

2nd hint: Nodal analysis is even easier.