Name: \qquad
You will need another paper for your calculations, but you may want to hand this sheet in with your drawings.

1. Find $L_{e q}$ in each case
a)

b)

2. Find the stored energy in each capacitor and/or inductor under steady-state conditions. Note: Treat caps as opens and inductors as shorts to find DC voltages and currents.

$C_{1}:=10 \cdot \mu \mathrm{~F}$

3. The current waveform shown below flows through a 2 mH inductor. Make an accurate drawing of the voltage across it. Label your graph.

4. The voltage across a 0.5 mH inductor is shown below. Make an accurate drawing of the inductor current. Label your graph. Assume the initial current is 0 mA .
${ }^{\mathrm{v}} \mathrm{L}$
(volts)

ECE 2210 / 00 homework \# 9

5. The voltage across a 1.2 mH inductor is $\quad{ }^{\mathrm{v}} \mathrm{L}=4 \cdot \mathrm{mV} \cdot \cos (300 \cdot \mathrm{t})$ find i_{L}.
6. The current through a 0.08 mH inductor is $\mathrm{i}_{\mathrm{L}}=20 \cdot \mathrm{~mA} \cdot \cos \left(628 \cdot \mathrm{t}-\frac{\pi}{4}\right)$ find v_{L}.
7. Refer to the circuit shown. Assume that V_{s} is a sinusoidal input voltage whose frequency can be adjusted. At some frequency of V_{s} this circuit can resonate. At that frequency $i_{C}(t)=-i_{L}(t)$. (i $i_{C}(t)$ is 180 degrees out-of-phase with $\left.i_{L}(t)\right)$.

Show that resonance occurs at this frequency:

$$
\omega_{o}=\frac{1}{\sqrt{L \cdot C}}, \quad f_{o}=\frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}
$$

8. Find the resonant frequency, f_{o} in each case.

Answers

1. $1.2 \cdot \mathrm{mH} \quad 0.62 \cdot \mathrm{mH} \quad 2 . \quad$ a) $0.05 \cdot \mathrm{~mJ} \quad$ b) $1.62 \cdot \mathrm{~mJ} \quad 0.081 \cdot \mathrm{~mJ} \quad 0.09 \cdot \mathrm{~mJ} \quad 0.18 \cdot \mathrm{~mJ}$
2. Straight lines between the following points: $(0 \mathrm{~ms},-8 \mathrm{mV}),(2 \mathrm{~ms},-8 \mathrm{mV}),(2 \mathrm{~ms}, 0 \mathrm{mV}),(3 \mathrm{~ms}, 0 \mathrm{mV}),(3 \mathrm{~ms}, 16 \mathrm{mV})$, $(5 \mathrm{~ms}, 16 \mathrm{mV}),(5 \mathrm{~ms}, 0 \mathrm{mV}),(6 \mathrm{~ms}, 0 \mathrm{mV}),(9 \mathrm{~ms},-10.67 \mathrm{mV}),(9 \mathrm{~ms}, 0 \mathrm{mV}),(10 \mathrm{~ms}, 0 \mathrm{mV})$
3. Straight lines between the following points: $(0 \mathrm{~ms}, 0 \mathrm{~A}),(0.2 \mathrm{~ms}, 1.2 \mathrm{~A}),(0.6 \mathrm{~ms},-0.4 \mathrm{~A})$, curves until it's flat at $(0.76 \mathrm{~ms},-0.72 \mathrm{~A})$, continues to curve up to $(1 \mathrm{~ms}, 0 \mathrm{~A}),(1.1 \mathrm{~ms}, 0 \mathrm{~A})$
4. $\mathrm{i}_{\mathrm{L}}=11.1 \cdot \mathrm{~mA} \cdot \sin (300 \cdot \mathrm{t})$
5. $\quad \mathrm{v}_{\mathrm{L}}=-1 \cdot \mathrm{mV} \cdot \sin \left(628 \cdot \mathrm{t}-\frac{1}{4} \cdot \pi\right)$
6. Assume a sinusoidal voltage, find i_{C} and i_{L} by integration and differentiation, and show that they are equal and opposite at the resonant frequency.
7. a) $17.79 \cdot \mathrm{kHz}$
b) $5305 \cdot \mathrm{~Hz}$

ECE 2210/00 homework \# 9

