If you have the textbook, read pages 128 to 147. If not, find the section in your book that covers first-order transient reponses of RC and RL circuits and read that.

1. An FE style problem
(A) 1.0×10^{-7} joules

A 10-microfarad capacitor has been charged to a potential of 150 volts. A resistor of 25Ω is then connected across the capacitor through a switch. When the switch has been closed for 10 time constants the total energy
(B) 1.1×10^{-1} joules dissipated by the resistor is most nearly
(C) 9.0×10^{1} joules
(D) 9.0×10^{3} joules
2. a) The switch is closed at time $t=0$ and $v_{C}(0)=0 V$, find $v_{C}(t)$.
b) What is the value of the voltage across C at $\mathrm{t}:=40 \cdot \mu \mathrm{~s}$

3. In the circuit below, the switch has been in the upper position for a long time and is switched down at time $t=0$.

What is the capacitor voltage $\left(\mathrm{V}_{\mathrm{C}}\right)$ at $\mathrm{t}:=4 \cdot \mathrm{~ms}$

5. a) What is the time constant of this circuit?

Hint: Use a Thevenin equivalent circuit.
b) What will be the final value of v_{C} ?
(After the switch has been closed for a long time)

6. In a circuit with two capacitors, the left capacitor $\left(\mathrm{C}_{1}\right)$ has an initial charge and the right capacitor $\left(\mathrm{C}_{2}\right)$ does not. When the switch is closed at time $\mathrm{t}=0$, current $\mathrm{i}(\mathrm{t})$ flows, discharging C_{1} and charging C_{2}.
a) Derive the differential equation for $i(t)$. Hint: write an equation in terms of i and integrals of i, then differentiate the whole equation.
Write your DE in this form: Constant $=x(t)+\tau \cdot \frac{d}{d t} x(t)$
What is the time constant (τ) ?

b) Find $i(t)$ given $C_{1}:=24 \cdot \mu \mathrm{~F}$
$\mathrm{C}_{2}:=12 \cdot \mu \mathrm{~F}$
$\mathrm{R}:=400 \cdot \Omega$
${ }^{\mathrm{v}_{\mathrm{C}}} 1(0)=18 \cdot \mathrm{~V}$
${ }^{v_{C 2}}(0)=0 \cdot V$
c) Find $v_{\mathrm{C} 2}(\mathrm{t})$ for the same values. Hint: The trick here will be finding the final condition. Realize that charge will be conserved. If C_{1} discharges x coulombs, then C_{2} will charge x coulombs. Charges will stop flowing when $\mathrm{v}_{\mathrm{C} 1}=\mathrm{v}_{\mathrm{C} 2}$. It may help to think of two water tanks, one with half the cross-sectional area of the other. $\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}}$
d) Find the initial and final stored energy of the system $\left(\mathrm{W}_{\mathrm{C} 1}+\mathrm{W}_{\mathrm{C} 2}\right)$ to find the total "loss". What happened to that energy?
$\begin{array}{lll}\text { Answers 1. } & \text { 2.a) } 12 \cdot \mathrm{~V}-12 \cdot \mathrm{~V} \cdot \mathrm{e}^{\frac{\mathrm{t}}{0.16 \cdot \mathrm{~m}}}\end{array}$
3. $6.61 \cdot \mathrm{~V}$ 4. $6.44 \cdot \mathrm{~ms}$
5. a) $5.87 \cdot \mathrm{~ms}$
b) $5 \cdot \mathrm{~V}$
b) $2.65 \cdot \mathrm{~V}$
6.b) $i(t)=45 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{3.2 \cdot \mathrm{~ms}}}$
c) $12 \cdot \mathrm{~V}-12 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{3.2 \cdot \mathrm{~ms}}}$
6.a)
$\tau=\mathrm{R} \cdot \frac{1}{\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}\right)}$
d) $1.3 \cdot \mathrm{~mJ}$ dissipated in resistor

