1. Analysis of the circuit shown yields the characteristic equation below. The switch has been in the top position for a long time and is switched down at time $t=0$. Find the initial conditions and write the full expression for $i_{L}(t)$, including all the constants that you find.
$\mathrm{s}^{2}+\left(\frac{1}{\mathrm{C} \cdot \mathrm{R}_{2}}+\frac{\mathrm{R}_{1}}{\mathrm{~L}}\right) \cdot \mathrm{s}+\left(\frac{\mathrm{R}_{1}}{\mathrm{~L} \cdot \mathrm{C} \cdot \mathrm{R}_{2}}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right)=0$
$\left(\frac{1}{\mathrm{C} \cdot \mathrm{R}_{2}}+\frac{\mathrm{R}_{1}}{\mathrm{~L}}\right)=1000 \cdot \sec ^{-1} \quad\left(\frac{\mathrm{R}_{1}}{\mathrm{~L} \cdot \mathrm{C} \cdot \mathrm{R}_{2}}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right)=2.222 \cdot 10^{6} \cdot \mathrm{sec}^{-2}$
$\mathrm{s}^{2}+1000 \cdot \frac{1}{\sec } \cdot \mathrm{~s}+2.222 \cdot 10^{6} \cdot \frac{1}{\sec ^{2}}=0$

2. What value of R_{1} would make the above circuit critically damped?
3. Look at the circuit in HW 17, problem 2. Change R_{1} and R_{2} to 50Ω and consider the voltage across R_{1} to be the output voltage. The transfer function would be:

$$
\mathbf{H}(s)=\frac{\mathbf{V}_{\mathbf{R 1}}(\mathrm{s})}{\mathbf{V}_{\mathbf{i n}}(\mathrm{s})}=\frac{\mathrm{s}^{2}+\frac{\mathrm{R}_{2}}{\mathrm{~L}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{1} \cdot R_{2} \cdot \mathrm{C}+\mathrm{L}}{\mathrm{R}_{1} \cdot \mathrm{~L} \cdot \mathrm{C}} \cdot \mathrm{~s}+\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1} \cdot \mathrm{~L} \cdot \mathrm{C}}}=\frac{\mathrm{s}^{2}+2500 \cdot \mathrm{~s}+1.25 \cdot 10^{6}}{s^{2}+3000 \cdot \mathrm{~s}+2.5 \cdot 10^{6}}
$$

a) What are the poles and zeros of this transfer function?
b) Plot these poles and zeros on the complex plane.
4. A feedback system is shown in the figure. a) What is the transfer function of the whole system, with feedback.

$$
\mathbf{H}(\mathrm{s})=\frac{\mathbf{X}_{\text {out }^{(s)}}}{\mathbf{X}_{\mathbf{i n}}(\mathrm{s})}=?
$$

Simplify your expression for $\mathbf{H}(\mathrm{s})$ so that the denominator is a simple polynomial.

b) $\mathrm{G}:=5$ Find the poles and zeroes of the system.
c) What type of damping response does this system have?
d) Find the value of G to make the transfer function critically damped.
e) If G is double the value found in part d) what will the damping response of the system will be?

ECE 2210 homework \# 18 p2

5. a) A feedback system is shown in the figure. What is the transfer function of the whole system, with feedback.
$\mathbf{H}(\mathrm{s})=\frac{\mathbf{X}_{\text {out }^{(s)}}}{\mathbf{X}_{\text {in }^{(s)}}}=$?

Simplify your expression for \mathbf{H} (s) so that the denominator is a simple polynomial.

b) Find the maximum value of F so that the system does not become underdamped.
c) Find the transfer function with $F:=0.2$
d) With $\mathrm{F}=0.2$, at what value of s can the system produce an output even with no input?
(That is, what value of \mathbf{s} makes $\mathbf{H}(\mathrm{s})=\infty$?)
e) Does the transfer function have a zero? Answer no or find the s value of that zero.

Answers

$1 \mathrm{i}_{\mathrm{L}}(0)=75 \cdot \mathrm{~mA} \quad{ }^{\mathrm{v}} \mathrm{C}^{(0)}=11.25 \cdot \mathrm{~V}$
${ }^{\mathrm{i}} \mathrm{L}^{(\mathrm{t})}=25 \cdot \mathrm{~mA}+\mathrm{e}^{\frac{-500}{\sec } \cdot \mathrm{t}} \cdot\left(50 \cdot \mathrm{~mA} \cdot \cos \left(\frac{1404}{\mathrm{sec}} \cdot \mathrm{t}\right)-457 \cdot \mathrm{~mA} \cdot \sin \left(\frac{1404}{\mathrm{sec}} \cdot \mathrm{t}\right)\right)$
2. $R_{1}=36.64 \cdot \Omega$
3. a) Zeroes: - 691 \& - 1809 Poles: $-1500 \pm 500 \cdot \mathrm{j}$
b)

4. a) $\frac{G \cdot(s+60)}{s^{2}+90 \cdot s+1800+G \cdot 10}$
b) poles: - $31.8 \quad \&-58.2$
zero: - 60
c) overdamped
d) 22.5
e) underdamped
5. a) $1000 \cdot \frac{s+40}{s^{2}+65 \cdot s+1000+200 \cdot F}$
b) 0.281
c) $1000 \cdot \frac{\mathrm{~s}+40}{\mathrm{~s}^{2}+65 \cdot \mathrm{~s}+1040}$
d) -28.5 or -36.5
e) -40

ECE 2210 homework \# 18 p2

