Folder: \qquad Name:

Fill in the blanks in the following circuits. For some of the simple calculations, you may simply write down the answer without showing work.
1.

$I_{D}=$ \qquad

Assume the diodes are silicon with a 0.7 V forward voltage drop:
Assume the LEDs have a 2 V forward voltage drop:
A.Stolp rev b

$\sim 0.7 \mathrm{~V}$

$\xrightarrow[{\xrightarrow{\sim 2 v s}}]{+\underbrace{7}}$
3.
$\mathrm{I}=$ \qquad

4.

$\mathrm{I}=$ \qquad $V_{D 2}=$ \qquad

Note: In problems 5 and 6 you'll have to make some assumptions about which diode(s) is/are conducting. Work the problem with those assumptions and see if you arrive at impossible answers. If so, change your assumptions and try again.

$\mathrm{I}_{1}=$ \qquad $\mathrm{I}_{2}=$ \qquad

There are four possible assumptions.

1. Neither diode conducts.
2. Only D_{1} conducts.
3. Only D_{2} conducts.
4. Both diodes conduct.

NOTE: You don't have to try all four possibilities. As soon as you find one that works, that's the answer. So make your best guess first.
6. $\mathrm{I}_{\mathrm{T}}=$ \qquad

$\mathrm{I}_{\mathrm{R} 2}=$ \qquad
7. $\mathrm{I}_{\mathrm{T}}=$

8. $\mathrm{V}_{\mathrm{R}}=$

10. $\mathrm{I}_{\mathrm{R} 1}:=30 \cdot \mathrm{~mA} \quad \mathrm{R}_{1}=$

11. $\mathrm{V}_{\mathrm{R}}=$ \qquad

12. $I_{R}=$

13. $\quad I_{R}=$

Warning: If I_{D} turns out negative, it is actually 0 and you must recalculate everything else.

You will need more paper for the next two problems, add a sheet or two.
14. Assume that diode D_{1} does conduct. Assume that diode D_{2} does NOT conduct.
a) Find $\mathrm{V}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{R} 3}, \mathrm{I}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{R} 2}$ based on these assumptions.

Stick with these assumptions even if your answers come out absurd.

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{R} 1}=? & \mathrm{I}_{\mathrm{R} 1}=? & \mathrm{I}_{\mathrm{R} 3}=? \\
\mathrm{~V}_{\mathrm{R} 2}=?
\end{array}
$$

b) Was the assumption about D_{1} correct? yes or no

How do you know? (Specifically show a value which is or is not within a correct range.)
c) Was the assumption about D_{2} correct? yes or no

How do you know?
15. Assume that diodes D_{1} and $\mathrm{D}_{2} \mathrm{DO}$ conduct.

Assume that diode D_{3} does NOT conduct.
a) Find $\mathrm{I}_{\mathrm{R} 2}, \mathrm{I}_{\mathrm{D} 2}, \mathrm{I}_{\mathrm{D} 1}, \& \mathrm{~V}_{\mathrm{D} 3}$ based on these assumptions. Stick with these assumptions even if your answers come out absurd.
$\mathrm{I}_{\mathrm{R} 2}=? \quad \mathrm{I}_{\mathrm{D} 2}=? \quad \mathrm{I}_{\mathrm{D} 1}=? \quad \mathrm{~V}_{\mathrm{D} 3}=$?

b) Based on the numbers above, was the assumption about D_{1} correct? yes no How do you know? (Show a value \& range.)
c) Was the assumption about D_{2} correct? yes no How do you know? (Show a value \& range.)
d) Was the assumption about D_{3} correct? yes no How do you know? (Show a value \& range.)
e) Based on your answers to parts b), c) \& e):
i) The real $\mathrm{I}_{\mathrm{R} 2}<\mathrm{I}_{\mathrm{R} 2}$ calculated in part a.
iii) The real $I_{R 2}>I_{R 2}$ calculated in part a.
ii) The real $I_{R 2}=I_{R 2}$ calculated in part a.

You do not need to justify your answer.

Answers

$1 \quad \mathrm{~V}_{\mathrm{D}}:=0.7 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{R}}:=3.3 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}:=10 \cdot \mathrm{~mA}$
3. $\mathrm{V}_{\mathrm{D}}:=0.7 \cdot \mathrm{~V}^{2} \quad \mathrm{~V}_{\mathrm{R}}=7.3 \cdot \mathrm{~V} \quad \mathrm{I}:=14.3 \cdot \mathrm{~mA}$
5. $\mathrm{V}_{\mathrm{D} 1}:=0.7 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{D} 2}:=-1.3 \cdot \mathrm{~V} \quad \mathrm{I}_{1}:=42.3 \cdot \mathrm{~mA}$
6. $\mathrm{I}_{\mathrm{D} 2}:=0 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{D} 1}:=0.7 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 2}:=13.8 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 3}:=9.83 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{D} 2}:=-2.17 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{T}}:=23.6 \cdot \mathrm{~mA}$
7. $\mathrm{V}_{\mathrm{D} 1}:=0.7 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{D} 2}:=0.7 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 1}:=0 \cdot \mathrm{~mA}$
8. $\mathrm{V}_{\mathrm{R}}:=4 \cdot \mathrm{~V} \quad \mathrm{R}:=267 \cdot \Omega$
10. $\mathrm{R}_{1}:=233 \cdot \Omega \quad \mathrm{R}_{3}:=150 \cdot \Omega$
11. $\mathrm{V}_{\mathrm{R}}:=6 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}:=50 \cdot \mathrm{~mA} \quad \mathrm{R}:=120 \cdot \Omega \quad \mathrm{P}_{\mathrm{R}}:=0.3 \cdot \mathrm{~W} \quad \mathrm{P}_{\mathrm{D}}:=0.6 \cdot \mathrm{~W}$
12. $\mathrm{I}_{\mathrm{L}}:=40 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R}}:=50 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D}}:=10 \cdot \mathrm{~mA} \quad \mathrm{P}_{\mathrm{R}}:=0.3 \cdot \mathrm{~W} \quad \mathrm{P}_{\mathrm{D}}:=0.12 \cdot \mathrm{~W}$
13. $\mathrm{I}_{\mathrm{D}}:=0 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{R}}:=56.3 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{L}}:=11.3 \cdot \mathrm{~V} \quad \mathrm{P}_{\mathrm{R}}:=0.38 \cdot \mathrm{~W} \quad \mathrm{P}_{\mathrm{D}}:=0 \cdot \mathrm{~W}$
14. a) $\mathrm{V}_{\mathrm{R} 1}:=0.7 \cdot \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 1}:=14 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R} 3}:=6 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D} 1}:=-8 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{R} 2}:=0.9 \cdot \mathrm{~V} \quad$ b) $n 0 \quad \mathrm{I}_{\mathrm{D} 1}=-8 \cdot \mathrm{~mA}<0$
c) no $\mathrm{V}_{\mathrm{D} 2}=\mathrm{V}_{\mathrm{R} 2}=0.9 \cdot \mathrm{~V}>0.7 \mathrm{~V}$
15. a) $\mathrm{I}_{\mathrm{R} 2}:=30 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D} 2}:=-4 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{D} 1}:=26 \cdot \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{D} 3}:=0.92 \cdot \mathrm{~V}$

ECE 2210 homework \# DO1 p. 4
b) yes $\mathrm{I}_{\mathrm{D} 1}:=26 \cdot \mathrm{~mA}>0$
c) no $\quad \mathrm{I}_{\mathrm{D} 2}:=-4 \cdot \mathrm{~mA}<0$
d) no $\mathrm{V}_{\mathrm{D} 3}:=0.92 \cdot \mathrm{~V}>0.7 \mathrm{~V}$
e) ii)

