Ex: Find the inverse Laplace transform for the following expression:

\[F(s) = \frac{2s - 20}{(s^2 + 4)} \]

SOL'N: A simple approach for finding the inverse transform is to recognize that this form corresponds to the sum of transformed cosine and sine functions with a denominator of \(s^2 + 4 = s^2 + \omega^2 \). That is, \(\omega = 2 \).

\[F(s) = \frac{2s - 20}{s^2 + 4} = A \frac{s}{s^2 + \omega^2} + B \frac{\omega}{s^2 + \omega^2} \]

If we equate the numerators on the left and right, we have the following result:

\[2s - 20 = As + B\omega = As + B \cdot 2 \]

The coefficients of each power of \(s \) must match (including \(s^0 \), the constant term). Starting with the highest power of \(s \), we match the coefficients on the left and right to determine the value of \(A \) and \(B \).

\[A = 2 \text{ and } B = -10 \]

The inverse transform follows directly from the above results:

\[\mathcal{L}^{-1} \left[\frac{2s - 20}{s^2 + 4} \right] = \mathcal{L}^{-1} \left[A \frac{s}{s^2 + \omega^2} + B \frac{\omega}{s^2 + \omega^2} \right] = A \cos 2t + B \sin 2t \]

or

\[\mathcal{L}^{-1} \left[\frac{2s - 20}{s^2 + 4} \right] = 2 \cos 2t - 10 \sin 2t \]