Ex:

After being closed for a long time, the switch opens at $t = 0$.

a) State whether $i(t)$ is underdamped, overdamped, or critically damped.

b) Write a numerical time-domain expression for $i(t)$, $t > 0$, the current through C. This expression must not contain any complex numbers.

Sol’N: a) We find the characteristic roots of the RLC circuit after time $t = 0$:

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

where

$$\alpha = \frac{R}{2L} \text{ (series RLC) and } \omega_0^2 = \frac{1}{LC}$$

Using values from the circuit, we have the following result:

$$\alpha = \frac{0.1 \ \Omega}{2 \cdot 3 \ \mu H} = \frac{100 \ \text{kr/s}}{6} = 16.67 \ \text{kr/s}$$

and

$$\omega_0^2 = \frac{1}{3 \ \mu H \cdot 1200 \ \mu F} = \left(\frac{1 \ \text{Mr/s}}{60}\right)^2 = \left(\frac{100 \ \text{kr/s}}{6}\right)^2$$

Since $\alpha = \omega_0$, the square root is zero and the circuit is critically damped:

$$s_1 = s_2.$$
b) First, we note that the form of our solution is as follows:

\[i(t) = A_1 e^{-\alpha t} + A_2 te^{-\alpha t} + A_3 \]

where \(s = -\alpha = -\frac{100 \text{ kr/s}}{6} \)

Second, we find \(A_3 \), which is equal to the final value of \(i(t) \). As \(t \to \infty \), the switch is open, eliminating the 0.2 \(\Omega \) resistor and 12 V source. Also, the \(L \) acts like a wire and the \(C \) acts like an open circuit. This leaves us with a wire, a 0.1 \(\Omega \) resistor, in a loop around the outside with an open at the bottom. All currents and voltages in this circuit will be zero.

\[A_3 = i(t \to \infty) = 0 \text{ A} \]

Third, we find the initial conditions in the circuit and match them to initial values for our symbolic solution:

\[i(t = 0^+) = A_1 \text{ and } \left. \frac{d i(t)}{dt} \right|_{t=0^+} = -\alpha A_1 + A_2 \]

For the circuit, we consider the energy variables \(i_L \) and \(v_C \) at \(t = 0^- \), when the \(L \) acts like a wire and the \(C \) acts like an open circuit. Also, the switch is closed.

In this case, the inductor is a short and the 0.1 \(\Omega \) resistor is dangling at the end of a wire. Since no current flows through the 0.1 \(\Omega \) resistor, the voltage across the \(C \) equals the voltage across the \(L \), which is zero:

\[v_C(0^-) = 0 \text{ V} \]

The upper part of the circuit forms a loop with current, (measured with arrow pointing to the right), determined by the voltage source and resistor.

\[i_L(0^-) = -\frac{12 \text{ V}}{0.2 \Omega} = -60 \text{ A} \]

Moving to time \(t = 0^+ \), these energy values don't change. We treat the \(C \) as a voltage source of zero volts and the \(L \) as a current source of –60 Amps. Also, the switch is now open.

Since the \(C \) is now in series with the \(L \), we have the initial value of \(i \):

\[i(0^+) = i_L(0^+) = i_L(0^-) = -60 \text{ A} \]
This gives us the value of A_1:

$$A_1 = i(0^+) = -60 \text{ A}$$

Finally, we want to find the value of the derivative of i at time $t = 0^+$. To do so, we equate i to an expression in terms of energy variables, i_L and/or v_C. Since $i = i_L$, our work is done:

$$i(t) = i_L(t)$$

We differentiate this equation to obtain an expression for i having only energy (or state) variables on the right side. Using the basic component equations for an L and C, we can express the right side in terms of non-derivatives:

$$\frac{di(t)}{dt} \bigg|_{t=0^+} = \frac{di_L(t)}{dt} \bigg|_{t=0^+} = \frac{v_L(0^+)}{L}$$

To find the initial voltage on the L, we write this voltage, (+ on left, – on right), as a function of the initial values of the energy variables, i_L and v_C.

$$v_L(0^+) = -v_C(0^+) - i_L(0^+)R \text{ where } R = 0.1 \Omega$$

or

$$v_L(0^+) = 0 - 60 \text{ A} \cdot 0.1 \Omega = 6 \text{ V}$$

Thus, we have the following result:

$$\frac{di(t)}{dt} \bigg|_{t=0^+} = \frac{v_L(0^+)}{L} = \frac{6 \text{ V}}{3 \mu\text{H}} = 2 \text{ MA/s} = -\alpha A_1 + A_2$$

Using values from earlier, we have the following result:

$$A_2 = 2 \text{ MA/s} + \frac{100 \text{ kr/s}}{6}(-60 \text{ A}) = 1 \text{ MA/s}$$

This yields the expression for $i(t)$:

$$i(t > 0) = -60e^{-16.67\text{kr/s}t} + 1 \text{ M} te^{-16.67\text{kr/s}t} \text{ A}$$