IDENTITY: \[\mathcal{L}\{f(at)\} = \frac{1}{a} F\left(\frac{s}{a}\right) \text{ for } a > 0 \]

PROOF: By definition, we have the following equation:
\[\mathcal{L}\{f(at)\} = \int_{0}^{\infty} f(at)e^{-st} \, dt \]

We change variables to \(\tau = at \).

At \(t = 0^- \), \(\tau = a0^- = 0^- \).

For \(t \to \infty \), \(\tau = a\infty = \infty \).

Inside the integral, \(st = s\tau/a \).

For \(dt \) we have \(dt/d\tau = a \), so \(dt = d\tau/a \).

Making these substitutions, our identity is verified:
\[\mathcal{L}\{f(at)\} = \int_{0}^{\infty} f(\tau)e^{-s\tau/a} \frac{d\tau}{a} = \frac{1}{a} F\left(\frac{s}{a}\right). \]

NOTE: \(\tau \) is a variable of integration that we may replace with \(t \) in the final integral.