Ex: \[i_s(t) = \begin{cases} -1 \text{ A} & t < 0 \\ 1 \text{ A} & t \geq 0 \end{cases} \]

Find a symbolic expression for the Laplace-transformed output, \(V_o(s) \), in terms of not more than \(R_1, R_2, L, C \), and values of sources or constants.

a) Find a symbolic expression for the Laplace-transformed output, \(V_o(s) \), in terms of not more than \(R_1, R_2, L, C \), and values of sources or constants.

b) Choose a numerical value for \(R_1 \) to make

\[v_1(t) = v_m e^{-\alpha t} \sin(\beta t) \]

where \(\beta = 7 \text{ k rad/s} \) and \(v_m \) and \(\alpha \) are real-valued constants.

Hint: \(R_1 \) behaves as though it is in parallel with \(L \) and \(C \).

c) Find the values of \(v_m \) and \(\alpha \).

soln: a) We find initial conditions at \(t=0^- \) for the \(L \) and \(C \) before transforming to the Laplace domain. Given that \(i_s(t) \) is constant at \(-1 \text{ A}\) for \(t<0 \), and \(R_1 \) behaves as though it is in parallel...
with \(L \) and \(C \) (as noted in the problem statement), we conclude that any oscillation will die out and leave the circuit in a constant state.

In other words, \(v_L = L \frac{di_L}{dt} = L \cdot 0 = 0 \)

and \(i_C = C \frac{dv_C}{dt} = C \cdot 0 = 0. \)

It follows that the \(L \) acts like a wire and the \(C \) acts like an open circuit.

In addition, the negative feedback of the op-amp causes the voltage at the input to be approximately \(0V \), or a virtual reference.

\[i_y(0^-) = -1A \]

The current follows the path of least resistance in choosing to flow thru the \(L \) rather than \(C \) or \(R \).
\[i_L(0^-) = -1 \text{ A} \]

Since the \(L \) acts like a wire, the initial voltage on \(C \) is 0V:

\[V_C(0^-) = 0 \text{ V} \]

Parallel sources for initial conditions are convenient in the \(\mathcal{F} \)-domain:

\[\frac{1}{\mathcal{F}} \quad \text{and} \quad \frac{1}{\mathcal{F}} \]

We may omit the initial condition for \(C \), since it is zero.

For the Laplace transform of \(i_T(t) \), we use only the value of \(i_T(t) \) for \(t > 0 \). (The value of \(i_T(t) \) for \(t < 0 \) is accounted for by the initial conditions on \(L \) and \(C \).)

\[I_T(s) = \mathcal{L}[1 \text{ A}] = \mathcal{L}[1 \text{ A} \cdot u(t)] = \frac{1}{s} \frac{1}{s} \]

\(\mathcal{F} \)-domain model:
We have $I_f(s) = I_3$, since no current flows into the op-amp. Since we have 0V at the -input of the op-amp, we have

$$V_o(s) = -I_f(s) \cdot R_2$$

or

$$V_o(s) = -I_3(s) \cdot R_2.$$

To find I_3, we use the virtual ref at the -input of the op-amp and place R_1 in parallel with the L and C. We also combine current sources:

\[
I_3(s) = \frac{2}{5} A \cdot \frac{1}{sC} || \frac{sL}{R_1} \cdot \frac{V_i(s)}{R_1} \]

\[
V_o(s) = -I_3(s) \cdot R_2 = -\frac{2}{5} A \left(\frac{1}{sC} || \frac{sL}{R_1} \right) \cdot \frac{R_2}{R_1} \]
b) From part (a), we have $V_1(s)$:

$$V_1(s) = \frac{2}{s} A \left(\frac{1}{sC + \frac{1}{sL} \parallel R_1} \right)$$

$$V_1(s) = \frac{2}{s} A \cdot \frac{1}{sC + \frac{1}{sL} \parallel R_1}$$

$$V_1(s) = \frac{2}{s} \frac{Z/C}{s^2 + C \cdot \frac{1}{sL} + \frac{1}{R_1C}}$$.

$$V_1(s) = \frac{\left(\frac{Z}{C} \cdot \frac{1}{sL}\right) \cdot \beta}{(s + \alpha)^2 + \beta^2}$$

where $\alpha \equiv \frac{1}{2R_1C}$, $\beta \equiv \frac{1}{LC} - \left(\frac{1}{Z/C}\right)^2$

Taking the inverse Laplace transform yields the following form of $V_1(t)$:

$$V_1(t) = \frac{2}{\beta C} e^{-\alpha t} \sin(\beta t)$$

We now find the value of R_1 that makes $\beta = 7 \text{ k rad/s}$.

$$\beta = \sqrt{\frac{1}{LC} - \left(\frac{1}{Z/C}\right)^2} = 7 \text{ k rad/s}$$

or

$$\beta^2 = \frac{1}{LC} - \left(\frac{1}{Z/C}\right)^2 = 49 \text{ M (rad/s)^2}$$
c) From the expression for $v_1(t)$ in part (b) we find the values of v_m and α.

\[v_m = \frac{2}{\beta C} = \frac{2}{\frac{12}{7} \frac{1}{6} \mu} = \frac{12}{7} \text{kV} = 1.71 \text{kV} \]

\[\alpha = \frac{1}{2R_1C} = \frac{1}{2 \cdot 125 \cdot \frac{1}{6} \mu} \text{r/s} = \frac{3M}{24} \text{r/s} = 24 \text{k r/s} \]