1.

After being in position a for a long time, the switch moves to position \mathbf{b} at time $t=0$.
Find a symbolic expression for the Laplace-transformed output, $\mathbf{V}_{\mathbf{0}}(s)$, in terms of not more than R_{1}, R_{2}, L, C, and values of sources or constants.
2. Choose a numerical value for R_{1} to make

$$
v_{1}(t)=v_{m} e^{-\alpha t}[\cos (\beta t)-\sin (\beta t)]
$$

where v_{m}, α, and β are real-valued constants.
Hint: R_{1} behaves as though it is in parallel with L and C.
Hint: $s=s+\alpha-\alpha$.
3.

Given $\omega=1 \mathrm{Mrad} / \mathrm{s}$, find the value of C that makes $z_{\mathrm{LY}}=-j 1.01 \Omega$. Note that z_{LY} is the equivalent impedance of the entire circuit.
4.

For the above 3-phase balanced circuit, find the single-phase equivalent model.
5. For the above 3-phase balanced circuit, find the numerical value of the phasor voltage \mathbf{V}_{bB}.

