Ex:

After being in position a for a long time, the switch moves to position \mathbf{b} at time t $=0$.
a) Find a symbolic expression for the Laplace-transformed output, $\mathbf{V}_{\mathrm{o}}(s)$, in terms of not more than R_{1}, R_{2}, L, C, and values of sources or constants.
b) Choose a numerical value for R_{1} to make

$$
v_{1}(t)=v_{m} e^{-\alpha t}[\cos (\beta t)-\sin (\beta t)]
$$

where v_{m}, α, and β are real-valued constants.
Hint: R_{1} behaves as though it is in parallel with L and C.
Hint: $s=s+\alpha-\alpha$.

Sol'n: a) First, we find the initial conditions. clearly, $i_{L}\left(0^{-}\right)=O A$ since there $t s$ no poor source to drive L.

The charges to $12 V$.
For the s-domain model, we may treat the - input as virtual ref. This means that R_{1}, L, C act as though they are in parallel.

$C v_{\mathrm{c}}\left(\mathrm{O}^{-}\right)$
$=12 \mathrm{~V}$ init cold

$$
V_{0}(s)=-\mathbb{I}(s) R_{z}
$$

We use an II-divider to find II(s):

$$
\mathbb{I}(s)=C v_{c}\left(0^{-}\right) \cdot \frac{s L \| \frac{1}{s C}}{R_{1}+s L \| \frac{1}{s C}}
$$

where $S L \| \frac{1}{S C}=\frac{L / C}{S L+\frac{1}{S C}}=\frac{S / C}{S^{2}+\frac{1}{L C}}$

We continue with the derivation by substituting the expression for $s L \| \frac{1}{5 C}$.

$$
\mathbb{I}(s)=C v_{c}\left(o^{-}\right) \frac{\frac{s / c}{s^{2}+\frac{1}{L C}}}{R_{1}+\frac{s / C}{s^{2}+\frac{1}{L C}}}
$$

$$
I(s)=C v_{C}\left(0^{-}\right) \frac{s / C}{s^{2} R_{1}+\frac{1}{L C} R_{1}+s / C}
$$

or

$$
\mathbb{I}(s)=C^{\prime} v_{C}\left(0^{-}\right) \frac{s / R_{1} \not \subset}{s^{2}+\frac{1}{R_{1} C} s+\frac{1}{L C}}
$$

Our final expression for $V_{0}(s)=$

$$
V_{0}(s)=-v_{C}\left(0^{-}\right) \frac{R_{2}}{R_{1}} \frac{s}{s^{2}+\frac{1}{R_{1} c} s+\frac{1}{L C}}
$$

b) We must match the form of $V_{1}(3)$ to the Laplace transform of $v_{1}(t)=$

$$
V_{1}(s)=v_{m}\left[\frac{s+\alpha}{(s+\alpha)^{2}+\beta^{2}}-\frac{\beta}{(s+\alpha)^{2}+\beta^{2}}\right]
$$

We have $V_{1}(s)=\mathbb{I}(s) R_{1}$ for the circuit.

$$
V_{1}(s)=v_{C}\left(0^{-}\right) \frac{s}{s^{2}+\frac{1}{R_{1} C} s+\frac{1}{L C}}
$$

Equating denominators, we obtain expressions for α and β.

$$
\begin{aligned}
s^{2}+\frac{1}{R_{1} C} s+\frac{1}{L C} & =(s+\alpha)^{2}+\beta^{2} \\
& =s^{2}+2 \alpha p+\alpha^{2}+\beta^{2}
\end{aligned}
$$

Equating coeffidênts:

$$
\begin{aligned}
\alpha=\frac{1}{2 R_{1} C}, \quad \beta^{2} & =\frac{1}{L C}-\alpha^{2} \\
\text { or } \beta & =\sqrt{\frac{1}{L C}-\alpha^{2}}
\end{aligned}
$$

If we consider the numerator of $V_{1}(s)$, we need $s+\alpha-\beta$ but we have only s.

Using the hint that $s=s+\alpha-\alpha$, we can get $s+\alpha-\beta$ if

$$
\alpha=\beta
$$

or

$$
\frac{1}{2 R_{1} C}=\sqrt{\frac{1}{L C}-\left(\frac{1}{2 R_{1} C}\right)^{2}}
$$

or

$$
\left(\frac{1}{2 R_{1} C}\right)^{2}=\frac{1}{L C}-\left(\frac{1}{2 R_{1} C}\right)^{2}
$$

or

$$
2\left(\frac{1}{2 R_{1} C}\right)^{2}=\frac{1}{L C}
$$

or

$$
2 R_{1}^{2} C^{2}=L C
$$

or
or

$$
\begin{aligned}
& R_{1}=\sqrt{\frac{L}{2 C}}=\sqrt{\frac{5 n H}{2\left(100 p^{F}\right)}}=\sqrt{25 \Omega} \\
& R_{1}=5 \Omega
\end{aligned}
$$

