Ex:

After being closed for a long time, the switch opens at $t=0$.
$L=1 \mu \mathrm{H} \quad C=16 \mu \mathrm{~F} \quad R_{1}=0.15 \Omega \quad R_{2}=0.1 \Omega$
If $i_{\mathrm{s}}=30 \mathrm{~mA}, \mathrm{f}$ ind $i(t)$ for $t>0$.

Sol'n: We may perform the following initial steps in any order:

1) Find characteristic roots for the parallel RLC circuit (for $t>0$)
2) Find the final value of $i(t)$ as $t->\infty$, which is the A_{3} (constant) term in the solution.
3) Find the initial values of energy variables: $i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)$and

$$
v_{C}\left(0^{+}\right)=v_{C}\left(0^{-}\right)
$$

We will perform the steps in the order listed. First, we find the characteristic roots.

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}
$$

After time $t=0, R_{1}$ will be disconnected from the circuit and may be ignored. The characteristic roots are unaffected by source i_{s}. We have a series RLC circuit for which the value of α is one-half the inverse L / R time constant:

$$
\alpha=\frac{R_{2}}{2 L}=\frac{0.1 \Omega}{2 \cdot(1 \mu \mathrm{H})}=50 \mathrm{k} / \mathrm{s}
$$

For both parallel and series RLC circuits, the resonant frequency, ω_{0}, is the inverse of the square root of the product of L and C :

$$
\omega_{\mathrm{o}}^{2}=\frac{1}{L C}=\frac{1}{1 \mu \mathrm{H} \cdot 16 \mu \mathrm{~F}}=(250 \mathrm{k})^{2}(\mathrm{r} / \mathrm{s})^{2}
$$

Substituting into the equation for the roots yields the following:

$$
s_{1,2}=-50 \mathrm{kr} / \mathrm{s} \pm \sqrt{(50 \mathrm{k})^{2}-(250 \mathrm{k})^{2}} \mathrm{r} / \mathrm{s} \approx-50 \mathrm{kr} / \mathrm{s} \pm j 245 \mathrm{kr} / \mathrm{s}
$$

The imaginary part of the roots is the damping frequency, which we may compute by taking the negative of the quantity inside the square root:

$$
\omega_{d}=\sqrt{\omega_{\mathrm{o}}^{2}-\alpha^{2}} \approx 245 \mathrm{kr} / \mathrm{s}
$$

For complex roots, we use the following form of solution:

$$
v(t)=A_{1} e^{-\alpha t} \cos \left(\omega_{d} t\right)+A_{2} e^{-\alpha t} \sin \left(\omega_{d} t\right)+A_{3}
$$

Now we proceed to step 2, where we find the A_{3} value from $v(t)$ as $t->\infty$. (The exponential terms decay as $t->\infty$, leaving only A_{3}.) We assume the circuit values become constant as $t->\infty$, causing the L to act like a wire and the C to act like an open circuit. The switch is also open, detaching R_{1} on the left, as shown in the diagram below.

Since the C acts like an open circuit, the current in the L is zero, and we have $A_{3}=i(t->\infty)=0 \mathrm{~A}$.

Third, we find the initial values of energy variables: $i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)$and $v_{C}\left(0^{+}\right)=v_{C}\left(0^{-}\right)$. At $t=0^{-}$, we assume circuit values are constant, causing the L to act like a wire and the C to act like an open circuit. The switch is closed, connecting the parallel RLC to R_{1} on the left.
$t=0^{-}:$

The C, acting like an open, makes the initial L current zero:

$$
i_{L}\left(0^{-}\right)=0 \mathrm{~A}
$$

The two R's are in parallel across the voltage source. We may use Ohm's law to find the voltage across the rails. This equals the voltage across the C :

$$
v_{C}\left(0^{+}\right)=v_{C}\left(0^{-}\right)=i_{s} \cdot R_{1}\left\|R_{2}=30 \mathrm{~mA} \cdot 0.1\right\| 0.15 \Omega
$$

or

$$
v_{C}\left(0^{+}\right)=v_{C}\left(0^{-}\right)=30 \mathrm{~mA} \cdot 0.06 \Omega=1.8 \mathrm{mV}
$$

At time $t=0^{+}$, we treat the C as a voltage source of 1.8 mV and the L as a current source of 0 A . (The switch is also open, removing R_{1} from the circuit.)

Because the current in the L is zero, all of i_{s} flows through R_{2}. The voltage across R_{2}, by Ohm's law, is $i_{s} R_{2}=30 \mathrm{~mA} \cdot 0.1 \Omega=3 \mathrm{mV}$.

We can solve the circuit for any voltage or current at $t=0^{+}$. Using Kirchhoff's laws for current sums at nodes, we have a voltage loop on the right that yields the voltage across the L at $t=0^{+}$:

$$
v_{L}\left(0^{+}\right)=3 \mathrm{mV}-1.8 \mathrm{mV}=1.2 \mathrm{mV}
$$

For the C, no current flows in the L, and so no current flows in the C :

$$
i_{C}\left(0^{+}\right)=0 \mathrm{~A}
$$

Now we are ready to find A_{1} and A_{2} by matching our symbolic solutions

$$
i\left(0^{+}\right)=A_{1}+A_{3}=A_{1}
$$

and

$$
\left.\frac{d i(t)}{d t}\right|_{t=0^{+}}=-\alpha A_{1}+\omega_{d} A_{2}
$$

to circuit values for these quantities. We have already found $i\left(0^{+}\right)$to be 0 A . Matching this to the symbolic solution for $t=0^{+}$, we have the following:

$$
A_{1}=0 \mathrm{~V}
$$

For the value of the derivative in the circuit, we first write our variable, ($i(t)$ in this case), in terms of energy (or state) variables, i_{L} and/or v_{C}. Here, i is i_{L} :

$$
i(t)=i_{L}(t)
$$

Next, we differentiate, and use the component equations involving $d / d t$ for L and/or C:

$$
\left.\frac{d}{d t} i(t)\right|_{t=0^{+}}=\left.\frac{d}{d t} i_{L}(t)\right|_{t=0^{+}}=\frac{v_{L}\left(0^{+}\right)}{L}=\frac{1.2 \mathrm{mV}}{1 \mu \mathrm{H}}=1.2 \mathrm{kA} / \mathrm{s}
$$

We equate this to the symbolic derivative:

$$
\left.\frac{d}{d t} i(t)\right|_{t=0^{+}}=-\alpha A_{1}+\omega_{d} A_{2}=\omega_{d} A_{2}=1.2 \mathrm{kA} / \mathrm{s}
$$

or

$$
A_{2}=\frac{1.2 \mathrm{kA} / \mathrm{s}}{\omega_{d}} \approx \frac{1.2 \mathrm{kA} / \mathrm{s}}{245 \mathrm{kr} / \mathrm{s}} \approx 4.9 \mathrm{~mA} / \mathrm{s}
$$

Plugging in values gives the solution for $v(t>0)$:

$$
i(t)=4.9 e^{-50 \mathrm{k} / \mathrm{s} \cdot t} \sin (245 \mathrm{kr} / \mathrm{s} \cdot t) \mathrm{mA}
$$

