Ex:

After being open for a long time, the switch closes at $t=0$.
$i_{\mathrm{s}}=4 \mathrm{~mA} \quad C=2 \mu \mathrm{~F} \quad R_{1}=200 \Omega \quad R_{2}=200 \Omega$
a) If $L=125 \mathrm{mH}$, find the characteristic roots, s_{1} and s_{2}, for the above circuit.
b) If $L=11.834 \mathrm{mH}$, find the damping frequency, ω_{d}.
c) Find the value of L that makes the circuit critically-damped, and find $i_{L}(t)$ for that value of L.

Sol'n: a) Because the switch closes at $t=0$, all of the components are in the circuit that we use to calculate the characteristic roots. All the components are in parallel, so we have a parallel RLC circuit, with the two R 's in parallel acting as the following equivalent R :

$$
R=R_{1}\left\|R_{2}=200 \Omega\right\| 200 \Omega=100 \Omega
$$

For a parallel RLC circuit, α is found as

$$
\alpha=\frac{1}{2 R C}=\frac{1}{2 \cdot 100 \Omega \cdot 2 \mu \mathrm{~F}}=2.5 \mathrm{k} / \mathrm{s}
$$

The resonant frequency squared is always $1 / L C$:

$$
\omega_{\mathrm{o}}^{2}=\frac{1}{L C}=\frac{1}{125 \mathrm{mH} \cdot 2 \mu \mathrm{~F}}=(2 \mathrm{kr} / \mathrm{s})^{2}
$$

The formula for the characteristic roots is always as follows:

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}
$$

Using our circuit, we obtain the roots:

$$
s_{1,2}=-2.5 \mathrm{k} \pm \sqrt{(2.5 \mathrm{k})^{2}-(2 \mathrm{k})^{2}} \mathrm{r} / \mathrm{s}=-2.5 \mathrm{k} \pm 1.5 \mathrm{kr} / \mathrm{s}
$$

or

$$
s_{1,2}=-1 \mathrm{kr} / \mathrm{s} \text { and }-4 \mathrm{kr} / \mathrm{s}
$$

Sol'n: b) Repeating the calculations from part (a) with the new value of L yields the following results, (α is unchanged):

$$
\begin{aligned}
& \omega_{\mathrm{o}}^{2}=\frac{1}{L C}=\frac{1}{11.834 \mathrm{mH} \cdot 2 \mu \mathrm{~F}} \approx(6 \mathrm{kr} / \mathrm{s})^{2} \\
& s_{1,2}=-2.5 \mathrm{k} \pm \sqrt{(2.5 \mathrm{k})^{2}-(6.5 \mathrm{k})^{2}} \mathrm{r} / \mathrm{s} \approx-2.5 \mathrm{k} \pm j 6 \mathrm{kr} / \mathrm{s}
\end{aligned}
$$

The damping frequency is the imaginary part of the roots, which may also be found by taking the negative of the quantity under the square root (so as to obtain a positive value):

$$
\omega_{d}=\sqrt{\omega_{\mathrm{o}}^{2}-\alpha^{2}} \approx \sqrt{(6.5 \mathrm{k})^{2}-(2.5 \mathrm{k})^{2}}=6 \mathrm{kr} / \mathrm{s}
$$

SoL'n: c) Critical damping occurs when $\alpha=\omega_{\mathrm{o}}$. Repeating the calculations from part (a) with the new value of L yields the following results, (α is unchanged):

$$
\alpha=\frac{1}{2 R C}=\omega_{\mathrm{o}}=\frac{1}{\sqrt{L C}}
$$

If we invert both sides of the equation, we have the following result:

$$
2 R C=\sqrt{L C}
$$

Using this equation, we solve for L :

$$
L=4 R^{2} C=4(100 \Omega)^{2} 2 \mu \mathrm{~F}=80 \mathrm{mH}
$$

The value of α was found in part (a) and is minus the value of the repeated root:

$$
s_{1,2}=-\alpha=-2.5 \mathrm{kr} / \mathrm{s}
$$

For critical damping, we use the following form of solution:

$$
i_{L}(t)=A_{1} e^{-\alpha t}+A_{2} t e^{-\alpha t}+A_{3}
$$

Now we start the circuit analysis.

All of i_{s} will flow through the short formed by the L as time approaches infinity, so the final value of i_{L} and the value of A_{3} will be zero.

$$
A_{3}=i_{s}=4 \mathrm{~mA}
$$

$\mathrm{t}=0^{-}$: (initial conditions on L and C)

The initial conditions on the L and C will be zero, since there is no source in the circuit for $t<0$. We match this to the critically damped symbolic solution at $t=0^{+}$:

$$
i_{L}\left(0^{+}\right)=0 \mathrm{~A}=A_{1}+A_{3}=A_{1}+4 \mathrm{~mA}
$$

or

$$
A_{1}=-4 \mathrm{~mA}
$$

Now we match the derivative of the inductor current found from the circuit to the symbolic solution at $t=0^{+}$:

$$
\left.\frac{d i_{L}(t)}{d t}\right|_{t=0^{+}}=-\alpha A_{1}+A_{2}=\frac{v_{L}\left(0^{+}\right)}{L}=\frac{v_{C}\left(0^{+}\right)}{L}=0 \mathrm{~A} / \mathrm{s}
$$

or

$$
A_{2}=\alpha A_{1}=2.5 \mathrm{k}(-4 \mathrm{~m}) \mathrm{A} / \mathrm{s}=-10 \mathrm{~A} / \mathrm{s}
$$

Thus, $i_{L}(t)=-4 \mathrm{~mA} \cdot e^{-2.5 \mathrm{k} t}-10 \mathrm{~A} t e^{-2.5 \mathrm{k} t}+4 \mathrm{~mA}$.

