1.

After being closed for a long time, the switch opens at $t=0$.
Give expressions for the following in terms of no more than $i_{\mathrm{g}}, R_{1}, R_{2} L$, and C :

$$
i\left(t=0^{+}\right) \quad \text { and }\left.\quad \frac{d i(t)}{d t}\right|_{t=0^{+}}
$$

2. Find the numerical values of L and C for the above circuit, given the following information:

$$
R_{1}=384 \mathrm{~m} \Omega \quad R_{2}=192 \mathrm{~m} \Omega \quad \alpha=24 \mathrm{kr} / \mathrm{s} \quad \omega_{\mathrm{d}}=7 \mathrm{kr} / \mathrm{s}
$$

3.

At $t=0, v_{\mathrm{g}}(t)$ switches instantly from $-\mathrm{v}_{\mathrm{O}}$ to v_{o}.
a) Write the state-variable equations for the circuit in terms of the state vector:

$$
\vec{x}=\left[\begin{array}{l}
i_{1} \\
i_{2} \\
v_{1}
\end{array}\right]
$$

b) Evaluate the state vector at $t=0^{+}$.
4.

After being open for a long time, the switch closes at $t=0$.
State whether $v(t)$ is under-damped, over-damped, or critically-damped.
5. Write a numerical time-domain expression for $v(t), t>0$, the voltage across R_{2} in problem 4. This expression must not contain any complex numbers.

