Ex:

After being closed for a long time, the switch opens at $t=0$.

$$
L=2.5 \mathrm{nH} \quad C=1.6 \mathrm{nF} \quad R=0.625 \Omega
$$

a) Give expressions for the following in terms of no more than $i_{\mathrm{g}}, R_{1}, R_{2} L$, and C :

$$
i\left(t=0^{+}\right) \quad \text { and }\left.\quad \frac{d i(t)}{d t}\right|_{t=0^{+}}
$$

b) Find the numerical values of L and C for the above circuit, given the following information:

$$
R_{1}=384 \mathrm{~m} \Omega \quad R_{2}=192 \mathrm{~m} \Omega \quad \alpha=24 \mathrm{kr} / \mathrm{s} \quad \omega_{\mathrm{d}}=7 \mathrm{kr} / \mathrm{s}
$$

Sol'N: a) $t=0^{-}$model: $L=$ wire, $C=$ open, find i_{L}, v_{C} switch closed

$$
\begin{aligned}
& i_{L}\left(0^{-}\right)=0 \text { since } C=\text { open } \\
& v_{C}\left(0^{-}\right)=i_{g} \cdot R_{1} \| R_{2} \text { since } v_{C} \text { across } R_{1} \| R_{2}
\end{aligned}
$$

Use sources for i_{L} and V_{C} at $t=0^{+}$ $i_{L}\left(\mathrm{O}^{+}\right)=i_{L}\left(\mathrm{O}^{-}\right)$and $v_{C}\left(\mathrm{O}^{+}\right)=v_{C}\left(\mathrm{O}^{-}\right)$
$t=0^{+}$model: $i_{L}=O A=$ open, $v_{d}=i_{g} R_{1} \| R_{2}$ switch open, R_{2} disconnected

$$
i\left(O^{+}\right)=O A \text { since } i=i_{L}=O A
$$

For $\left.\frac{d i}{d t}\right|_{t=0^{+}}$, we observe that $i=i_{L}$.
Thus, $\left.\quad \frac{d i}{d t}\right|_{t=0^{+}}=\left.\frac{d i_{L}}{d t}\right|_{t=0^{+}}=\left.\frac{v_{L}}{L}\right|_{t=0^{+}}$

To find $v_{L}\left(0^{+}\right)$, we observe that in must flow thru R_{1} since no current flows in L at $t=0^{+}$. It follows that the v-drop across R_{1} is in R_{1}.

For $v-l o o p$ on the right side, we have

$$
i g R_{1}-v_{L}-i g R_{1} \| R_{2}=O V
$$

or

$$
V_{L}=i_{g} R_{1}-i_{g} R_{1} \| R_{2}
$$

Thus $\left.\frac{d i}{d t}\right|_{t=0^{+}}=\frac{v_{L}\left(0^{+}\right)}{L}=\frac{i_{g} R_{1}-i_{g} R_{1} \| R_{2}}{L}$.
b) We are given $\alpha=24 \mathrm{kr} / \mathrm{s}$ and $\omega_{d}=7 \mathrm{kr} / \mathrm{s}$.

Thus, $\quad s_{1,2}=-\infty \pm j \omega d=-24 k \pm j>k r / s$.
After $t=0$, only R_{1} is in the circuit, and the circuit is a series RLC.

Thus $\alpha=\frac{R_{1}}{2 L}$ and $\omega_{d}^{2}=\frac{1}{L C}-\alpha^{2}$.
From α eg'n, $L=\frac{R_{1}}{2 \alpha}=\frac{384 \mathrm{~m} \Omega}{2 \cdot 24 \mathrm{kr} / \mathrm{s}}=8 \mu \mathrm{H}$.
From ω_{d}^{2} eq, $\frac{1}{L C}=\omega_{d}^{2}+\alpha^{2}=49 M+(24 k)^{2} r^{2} / s^{2}$
or $\quad \frac{1}{L C}=625 \mathrm{M} \mathrm{r} \mathrm{r}^{2} / \mathrm{s}^{2}$
or

$$
d=\frac{1}{L .625 M} F
$$

or

$$
C=\frac{1}{8 \mu H \cdot 625 M} F
$$

or

$$
C=\frac{1}{5 k} F
$$

or

$$
C=200 \mu \mathrm{~F}
$$

