Ex:

After being closed for a long time, the switch opens at t = 0.

L = 2.5 nH C = 1.6 nF $R = 0.625 \Omega$

a) Give expressions for the following in terms of no more than i_g , R_1 , $R_2 L$, and C:

$$i(t = 0^+)$$
 and $\frac{di(t)}{dt}\Big|_{t=0}$

b) Find the numerical values of L and C for the above circuit, given the following information:

 $R_1 = 384 \text{ m}\Omega$ $R_2 = 192 \text{ m}\Omega$ $\alpha = 24 \text{ kr/s}$ $\omega_d = 7 \text{ kr/s}$

SOL'N: a) t=0 model: L=wire, C=open, find i_, ve switch closed

il (0-) = 0 since C = open

Ve (0-) = ig · Rill R2 since Ve across RillR2

Use sources for is and v_c at $t=0^+$: $i_1(0^+)=i_1(0^-)$ and $v_c(0^+)=v_c(0^-)$

t=0⁺ model:
$$i_{L} = 0A = open, V_{d} = i_{d} R_{1} || R_{2}$$

switch open, R_{2} disconnected
 $A = open$
 i_{g} + i_{d} + V_{L}
 i_{g} + i_{g} + V_{L}
 i_{g} + i_{g} + i_{g} + i_{g} + i_{g}
 i_{g} + i_{g}

b) We are given &= 24kr/s and wd = 7 kr/s. Thus, S1,2 = - 02 ± jwd = -24k± j7k r/s. After t=0, only R, is in the circuit, and the circuit is a series RLC. Thus $\alpha = \frac{R_1}{2L}$ and $\omega_d^2 = \frac{L}{LC} - \kappa^2$. From α egn, $L = \frac{R_1}{2\alpha} = \frac{384 \text{ m} \cdot x}{2 \cdot 24 \text{ km} \cdot 8} = 8 \mu \text{ H}.$ From $w_d^2 egn$, $\frac{1}{12} = w_d^2 + x_d^2 = 49 M + (24 k) r^3/3^2$ or $\frac{1}{10} = 625 \text{ M } \text{ r}^{3}/\text{s}^{2}$ ٥r d = 1 F L·625 M or C = 1 F 8 JLH - 625 M ٥r C = <u>|</u> F or C = 200 JLF