Ex:

At $t=0, v_{\mathrm{g}}(t)$ switches instantly from $-\mathrm{v}_{\mathrm{O}}$ to v_{O}.
a) Write the state-variable equations for the circuit in terms of the state vector:

$$
\vec{x}=\left[\begin{array}{l}
i_{1} \\
i_{2} \\
v_{1}
\end{array}\right]
$$

b) Evaluate the state vector at $t=0^{+}$.

Sol'n: a) . Write first derivatives of state variables on the left side of eq' ns.

- Use $\frac{d i_{L}}{d t}=\frac{v_{L}}{L}$ and $\frac{d v_{C}}{d t}=\frac{i_{C}}{C}$ to get non-derivatives on the right of each eg'n.
- Write v_{L} or i_{C} as a function of only state variables (no derivatives), $i_{L}^{\prime} s$ and $v_{c} I_{s}$, and component or source values.

It is visually helpful to draw L^{\prime} 's and $C^{\prime} s$ as i_{L} sources and v_{C} sources. Then we use Kirchhoff's Laws and Ohm's Law or more formal methods such as node-v to write expressions for $V_{L}{ }^{\prime} s$ and $i_{C}^{\prime} s$.

Here, the circuit is complicated enough to warrant the use of noderv method.

$$
\begin{aligned}
v_{a} \text { node: } & \frac{v_{a}-v_{1}}{R_{1}}+i_{1}+i_{2}+\frac{v_{a}-v_{g}}{R_{2}}=O A \\
& v_{a}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{v_{1}}{R_{1}}+\frac{v_{g}}{R_{2}}-i_{1}-i_{2}
\end{aligned}
$$

malt by $R_{1} R_{2} \quad v_{9}\left(R_{2}+R_{1}\right)=R_{2} v_{1}+v_{g} R_{1}-\left(i_{1}+i_{2}\right)$
$-R_{1} R_{2}$

$$
v_{9}=\frac{R_{2} v_{1}+v_{g} R_{1}-\left(\dot{c}_{1}+i_{2}\right) R_{1} R_{2}}{R_{1}+R_{2}}
$$

We can now use the expression for v_{q} :

$$
\begin{aligned}
& v_{L 1}=v_{a}-v_{1} \\
& v_{L 2}=v_{a} \\
& i_{d 1}=i_{1}+\frac{v_{a}-v_{1}}{R_{1}}
\end{aligned}
$$

Now we substitute for V_{a} and the above eq'ns in the state eqins: (Note: $V_{g}=+v_{0}$)

$$
\begin{aligned}
& \frac{d i_{L_{1}}}{d t}=\frac{d i_{1}}{d t}=\frac{1}{L_{1}}\left(\frac{R_{2} v_{1}+v_{g} R_{1}-\left(i_{1}+i_{2}\right) R_{1} R_{3}-v_{1}}{R_{1}+R_{2}}\right) \\
& \frac{d i_{L_{2}}}{d t}=\frac{d i_{2}}{d t}=\frac{1}{L_{2}}\left(\frac{R_{2} v_{1}+v_{g} R_{1}-\left(i_{1}+i_{2}\right) R_{1} R_{2}}{R_{1}+R_{2}}\right) \\
& \frac{d v_{c}}{d t}=\frac{d v_{1}}{d t}=\frac{1}{c}\left(i_{1}+\frac{R_{2} v_{1}+v_{g} R_{1}-\left(i_{1}+i_{2}\right) R_{1} R_{2}}{R_{1}\left(R_{1}+R_{2}\right)} \frac{v_{1}}{R_{1}}\right)
\end{aligned}
$$

b) For the state vector at $t=0^{+}$, we find the state vector at $t=0$: (The state vars are energy vars that can't change instant (y.)
$t=0^{-}$model: $C=o p e n, L=$ wire, $v_{g}=-v_{0}$

$i_{1}\left(0^{-}\right)=0$ since there is open circuit at v_{1} and R_{1} is shorted, (so no current in any direction from node on left side of R_{1}).
$i_{2}\left(\mathrm{O}^{-}\right)=-\frac{v_{0}}{R_{2}}$ from loop on right side $v_{1}\left(0^{-}\right)=0$ since short at i_{2} and short across R_{1} (eaves on for ν_{1} in v-loop lower left.

$$
\left[\begin{array}{c}
i\left(0^{+}\right) \\
i_{2}\left(0^{+}\right) \\
v_{1}\left(0^{+}\right)
\end{array}\right]=\left[\begin{array}{c}
0 A \\
-v_{0} / R_{2} \\
O V
\end{array}\right]
$$

