Ex:

After being open for a long time, the switch closes at $t=0$.
a) State whether $v(t)$ is under-damped, over-damped, or critically-damped.
b) Write a numerical time-domain expression for $v(t), t>0$, the voltage across R_{2} in problem 4 . This expression must not contain any complex numbers.
Sol'N: a) After $t=0$, we have a parallel RLC with $R=R_{1} \| R_{2}$. (We could use a Norton equivalent for V_{g} and R_{1} to see that we have $R=R_{1} \| R_{2}$.)

For parallel RLC, we have

$$
\begin{aligned}
& S_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}, \quad \alpha=\frac{1}{2 R C}, \omega_{0}^{2}=\frac{1}{L C} \\
& \text { where } R=R_{1} \| R_{2}=12 \Omega \| 2.4 \Omega \\
&=2.4 \Omega \cdot 5 \| 1=2 \Omega \\
& \alpha=\frac{1}{2 \cdot 2 \Omega \cdot 10 \mathrm{nF}}=\frac{1 \mathrm{G} / \mathrm{s}^{2}=25 \mathrm{Mr} / \mathrm{s}}{40} \\
& \omega_{0}^{2}=\frac{1}{160 \mathrm{nH} \cdot 10 \mathrm{nF}}=\left(\frac{1 \mathrm{G}}{40}\right)^{2}(\mathrm{r} / \mathrm{s})^{2}=(25 \mathrm{M})^{2}(\mathrm{r} / \mathrm{s})^{2}
\end{aligned}
$$

Since $\alpha^{2}=\omega_{0}^{2}$, the circuit is critically-damped.
b) For critically -damped circuit, we use

Since R_{2} is shorted by L, we have

$$
A_{3}=v(t \rightarrow \infty)=\Delta v
$$

Now we match the symbolic and circuit values of $v\left(0^{+}\right)$and $\left.\frac{d v}{d t}\right|_{t=0^{+}}$.

$$
\begin{aligned}
& \text { symbolic } v\left(0^{+}\right)=A_{1} e^{-\alpha \cdot 0^{+}}+A_{2} \cdot 0^{+} \cdot e^{-\alpha 0^{+}} \\
& t_{\text {makes }} \text { nd } \\
& v\left(0^{+}\right)=A_{1}
\end{aligned} \quad \text { term }=0 \quad \$
$$

$$
\begin{aligned}
& \text { symbolic }\left.\frac{d v}{d t}\right|_{t=0^{+}}=-\alpha A_{1} e^{-\alpha t}+A_{2} e^{-\alpha t} \\
& \text { or } \\
& +-\left.\alpha A_{2} t e^{-\alpha t}\right|_{t=0^{+}}
\end{aligned}
$$

$$
\left.\frac{d v}{d t}\right|_{t=0^{+}}=-\alpha A_{1}+A_{2}
$$

For the circuit, we start with $t=0^{-}$, $L=$ wire, $C=o p e n$, switch open, and we find i_{L} and v_{c}.

$$
\begin{aligned}
& v(t)=A_{1} e^{-\alpha t}+A_{2} t e^{-\alpha t}+A_{3} \\
& \text { where } \quad \alpha=25 \mathrm{M} \mathrm{r} / \mathrm{s} \\
& A_{3}=v(t \rightarrow \infty) . \\
& t \rightarrow \infty \text { model: } L=\text { wire, } C=\text { open, switch closed } \\
& R_{1}=12 \Omega
\end{aligned}
$$

We have two separate circuits at $t=0^{-}$: $t=0^{-}$model:

On the left, v_{c} charges to 10 V . (There is no current in R, and no v-drop across R_{1}.)

On the right, the current in L must be zero. (L discharges thru R_{2}.)

$$
v_{C}\left(0^{-}\right)=10 \mathrm{~V} \quad i_{L}\left(\mathrm{O}^{-}\right)=0 \mathrm{~A}
$$

$t=0^{+}$model: Use sources for v_{C} and i_{L}

$$
\begin{aligned}
& v_{C}\left(\mathrm{O}^{+}\right)=v_{C}\left(\mathrm{O}^{-}\right)=10 \mathrm{~V} \\
& i_{L}\left(\mathrm{O}^{+}\right)=i_{L}\left(\mathrm{O}^{-}\right)=0 \mathrm{~A} \quad \text { (open) }
\end{aligned}
$$

$$
R_{1}=12 \Omega \text { switch closed }
$$

Since R_{2} is across C, $v\left(0^{+}\right)=v_{C}\left(0^{+}\right)=10 \mathrm{~V}$

$$
v\left(0^{+}\right)=A_{1}=10 \mathrm{~V}
$$

For $\left.\frac{d v}{d t}\right|_{t=0^{+}}$, we have $\frac{d v(t)}{d t}=\frac{d v_{c}}{d t}=\frac{i_{c}}{c}$, (v is across C).

So we want to find $i_{c}\left(0^{+}\right)$.

Using a current summation for the top node, we have

$$
\frac{10 \mathrm{~V}-10 \mathrm{~V}}{R_{1}}+i_{c}\left(\mathrm{O}^{+}\right)+\underset{\mathrm{K}_{1}}{\mathrm{R}_{1}^{\prime}}\left(\mathrm{O}^{+}\right)+\frac{10 \mathrm{~V}}{\mathrm{O}_{2}}=O \mathrm{~A}
$$

or

$$
i_{C}\left(0^{+}\right)=-\frac{10 \mathrm{~V}}{R_{2}} \quad \begin{array}{r}
\text { (current flows up out of } \\
\left.C \text { and down thru } R_{2}\right)
\end{array}
$$

Thus $\left.\quad \frac{d v}{d t}\right|_{0+}=\frac{\frac{-10 \mathrm{~V}}{R_{z}}}{d}=\frac{-10 \mathrm{~V}}{2.4 \Omega \cdot 10 \mathrm{nF}}=\frac{-1}{2.4} \mathrm{GW}$

$$
n=-\alpha A_{1}+A_{2}=-25 \mathrm{Mr} / 5 \cdot 10 \mathrm{~V}+A_{2}
$$

We have $A_{2}=-\frac{1}{2} G \mathrm{~V} / \mathrm{s}+250 \mathrm{MV} / \mathrm{s}$

$$
\begin{aligned}
& A_{2}=-416.7 \mathrm{M}+250 \mathrm{MV} / \mathrm{s} \\
& A_{2} \doteq-166.7 \mathrm{MV} / \mathrm{s}
\end{aligned}
$$

so

$$
v(t) \doteq 10 e^{-25 M t}-167 \mathrm{M} / \mathrm{s} \cdot t e^{-2 M t} V
$$

