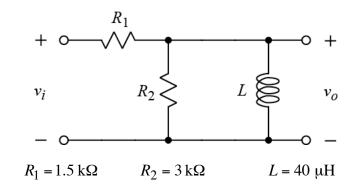
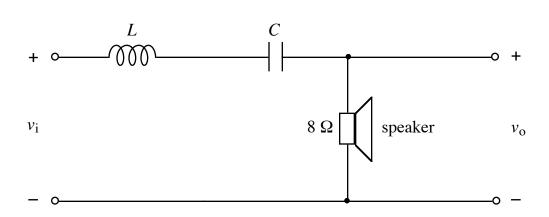


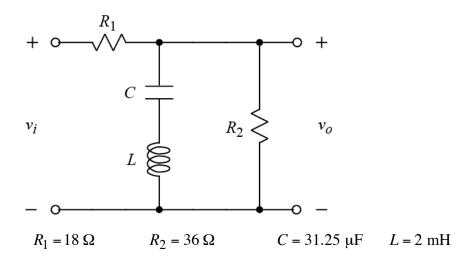
1.



- a) Determine the transfer function V_0/V_i .
- b) Plot $|V_0/V_i|$ versus ω .
- c) Find the cutoff frequency, ω_c .


2.

- a) Determine the transfer function V_0/V_i .
- b) Plot $|V_0/V_i|$ versus ω .
- c) Find the cutoff frequency, ω_c .


- a) Determine the transfer function V_0/V_i . Hint: use a Thevenin equivalent on the left side.
- b) Plot $|V_0/V_i|$ versus ω .
- c) Find the cutoff frequency, ω_c .

The above circuit is part of a simple crossover network for driving a midrange speaker having an impedance of $\$\Omega$. The circuit is described at the following web site: http://www.termpro.com/articles/xover2.html. A more in-depth discussion of crossover networks may be found at http://sound.westhost.com/lr-passive.htm.

- a) The web site describing the above bandpass filter suggests using cutoff frequencies of $f_{C1} = 130$ Hz and $f_{C2} = 4$ kHz. Determine the *L* and *C* values that yield these cutoff frequencies.
- b) Plot $|V_0/V_i|$ versus ω .

4.

- a) For the band-reject filter shown above, determine the transfer function V_0/V_i . **Hint:** move R_2 to the left of *L* and *C*, and use a Thevenin equivalent.
- b) Find ω_0
- c) Find ω_{C1} and ω_{C2}
- d) Find β and Q