Ex:

a) Determine the transfer function V_{o} / V_{i}. Hint: use a Thevenin equivalent on the left side.
b) Plot $\left|\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}\right|$ versus ω.
c) Find the cutoff frequency, ω_{c}.

Sol'n: a) We use a Thevenin equivalent, as suggested in the problem, consisting of the input source, v_{i}, R_{1}, and R_{2}. The Thevenin voltage source is obtained by removing the L from the circuit and measuring the voltage across R_{2}. This leaves a voltage divider:

$$
v_{\mathrm{Th}}=v_{i} \frac{R_{2}}{R_{1}+R_{2}}
$$

To find R_{Th}, we turn off the v_{i} source, which becomes a wire, and look in from the output terminals of the Thevenin circuit, (i.e., across R_{2}), and we see resistance $R_{1} \| R_{2}$.

$$
R_{\mathrm{Th}}=R_{1} \| R_{2}
$$

Our new circuit, converted to the frequency domain, is shown below:

The voltage-divider formula gives the transfer function, starting with the formula for V_{o} :

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{i} \frac{R_{2}}{R_{1}+R_{2}} \frac{j \omega L}{R_{\mathrm{Th}}+j \omega L}
$$

Dividing by V_{i} gives the transfer function. (Note that we do not replace V_{i} with V_{Th}.)

$$
H(j \omega)=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{i}}=\frac{R_{2}}{R_{1}+R_{2}} \frac{j \omega L}{R_{\mathrm{Th}}+j \omega L}
$$

A better form is obtained by dividing top and bottom by $j \omega L$:

$$
\begin{aligned}
H(j \omega) & =\frac{R_{2}}{R_{1}+R_{2}} \frac{1}{1+\frac{R}{j \omega L}}=\frac{R_{2}}{R_{1}+R_{2}} \frac{1}{1-j \frac{R_{\mathrm{Th}}}{\omega L}} \\
& =\frac{R_{2}}{R_{1}+R_{2}} \frac{1}{1-j \frac{1 \mathrm{k}}{\omega 40 \mu}}=\frac{R_{2}}{R_{1}+R_{2}} \frac{1}{1-j \frac{25 \mathrm{M}}{\omega}}
\end{aligned}
$$

b) The plot is generated with the following Matlab ${ }^{\circledR}$ code.

```
% ECE2260F10_HW3p3soln.m
% Plot of transfer function of RL high-pass filter.
R1 = 1.5e3; % Ohms
R2 = 3e3; % Ohms
R_Th = R1 * R2 / (R1 + R2); % Ohms
L = 40e-6; % Henry's
omega = 1e6:1e6:100e6;
H = R2/(R1 + R2) * 1 .// (1 - j*R_Th ./ (omega*L));
plot(omega,abs(H))
xlabel('omega')
ylabel('IH|')
```


c) We find the cutoff frequency by setting the magnitude of the transfer function equal to $1 / \sqrt{2}$ times the \max value of $|H|$. Here the max value of $|H|$ will be $R_{2} /\left(R_{1}+R_{2}\right)=2 / 3$.

$$
\left|H\left(j \omega_{c}\right)\right|=\frac{1}{\sqrt{2}} \max _{\omega}|H(j \omega)|=\frac{1}{\sqrt{2}}\left(\frac{2}{3}\right)
$$

The factor of $2 / 3$, however, is also present in the magnitude of H, and we may cancel it out. This leaves us with the following equation:

$$
|H(j \omega)|=\left|\frac{1}{1+\frac{R_{\mathrm{Th}}}{j \omega L}}\right|=\frac{1}{\sqrt{2}}
$$

We observe that $\sqrt{2}=|1 \pm j|$ meaning we can solve for ω_{c} by setting $R_{\mathrm{Th}} / \omega L$ equal to one:

$$
\frac{R_{\mathrm{Th}}}{\omega_{c} L}=1
$$

or

$$
\omega_{c}=\frac{R_{\mathrm{Th}}}{\mathrm{~L}}=\frac{1 \mathrm{k}}{40 \mu} \mathrm{r} / \mathrm{s}=25 \mathrm{Mr} / \mathrm{s}
$$

