

Given the resistor connected as shown and using not more than one each R, L, and C in the dashed-line box, design a circuit to go in the dashed-line box that will produce the **band-pass** $|H(j\omega)|$ vs. ω shown above. That is:

 $\max_{\omega} |H(j\omega)| = 1 \text{ and occurs at } \omega_0 = 1 \text{ M r/s}$ $|H(j\omega)| = \frac{1}{3} \text{ at } \omega = 0 \quad \text{and} \quad \lim_{\omega \to \infty} |H(j\omega)| = \frac{1}{3}$

If you use a C in your solution, use C = 0.5 nF.

- There is an open circuit from the top rail to the bottom rail when w=wo,
- or 2) There is a short circuit in the top rail connecting the input directly to the output when ω=ω_o. Given the IKSZ resistor on the right side, only condition (2) is possible.

To achieve the short circuit at $\omega_0 = |Mr/s|$, we use a series L and C.

The circuit thus far:

To find L, we have $\omega_0^2 = \frac{1}{LC} \Rightarrow L = \frac{1}{\omega_0^2 C}$ $L = \frac{1}{(IM)^2 \frac{1}{2} n}$ H = Z m H

The above circuit is incomplete, as $H(j\omega)$ will be zero at $\omega = 0$, (when the C becomes an open circuit), and $H(j\omega)$ will be zero as $\omega \rightarrow \infty$, (when the L becomes an open circuit).

To achieve a gain of 1/3, i.e. $|H| = \frac{1}{3}$, at w=0 and $w \rightarrow \infty$ the L and C' must be by passed by a resistor.

At w=0 and $w \rightarrow \infty$, the circuit effectively consists of the v_i source and the two R's. Using the voltage-divider formula, we have (for w=0 or $w \rightarrow \infty$)

$$|H(j\omega)| = \frac{1}{3} = \frac{R_1}{R_1 + R_2}.$$

This means R_1 is $\frac{1}{3}$ of the total of $R_1 + R_2$.

In other words, the ratio of R_1 to the total of $R_1 + R_2$ is 1 to 3. It follows that $R_1 + R_2 = 3k \cdot 2$, since $R_1 = 1k \cdot 2$.

Thus, R2=2KQ.

- Note: Does R2 alter the circuit's behavior at wo = 1 M r/s? Because the L and C act like a short circuit at wo, R2 is bypassed and leaves the circuit response unaltered at wo.
- Note: Finding the cutoff frequencies for this circuit is difficult owing to the R's from the L and C in the expression for $H(i\omega)$.