Ex:

Given the resistor connected as shown and using not more than one each R, L, and C in the dashed-line box, design a circuit to go in the dashed-line box that will produce the band-pass $|\mathrm{H}(j \omega)|$ vs. ω shown above. That is:

$$
\begin{aligned}
& \max _{\omega}|H(j \omega)|=1 \text { and occurs at } \omega_{0}=1 \mathrm{Mr} \mathrm{r} / \mathrm{s} \\
& |H(j \omega)|=\frac{1}{3} \text { at } \omega=0 \quad \text { and } \quad \lim _{\omega \rightarrow \infty}|H(j \omega)|=\frac{1}{3}
\end{aligned}
$$

If you use a C in your solution, use $\mathrm{C}=0.5 \mathrm{nF}$.
sol'n: To achieve a gain of one, ie., $|H|=1$, at $\omega_{0}=1 \mathrm{Mr} / \mathrm{s}$ we need to satisfy one of two following conditions:

1) There is an open circuit from the top rail to the bottom rail when $\omega=\omega_{0}$, or 2) There is a short circuit in the top rail connecting the input directly to the output when $\omega=\omega_{0}$.
Given the $1 k \Omega$ resistor on the right side, only oundition (z) is possible.

To achieve the short circuit at $\omega_{0}=1 \mathrm{Mr} / \mathrm{s}$, we use a series L and C.

The circuit thus far:

To find L, we have $\omega_{0}^{2}=\frac{1}{L C} \Rightarrow L=\frac{1}{\omega_{0}^{2} C}$

$$
L=\frac{1}{(1 M)^{2} \frac{1}{2} n} H=2 \mathrm{mH}
$$

The above circuit is incomplete, as $H(j \omega)$ will be zero at $\omega=0$, (when the C becomes an open circuit), and $H(j \omega)$ will be zero as $\omega \rightarrow \infty$, (when the L becomes an open circuit).

To achieve a gain of $1 / 3$, i.e. $|H|=\frac{1}{3}$, at $\omega=0$ and $\omega \rightarrow \infty$ the L and C^{\prime} must be bypassed by a resistor.

The final circuit:

At $\omega=0$ and $\omega \rightarrow \infty$, the circuit effectively consists of the v_{i} source and the two Rs. Using the voltage-divider formula, we have (for $\omega=0$ or $\omega \rightarrow \infty$)

$$
|H(j \omega)|=\frac{1}{3}=\frac{R_{1}}{R_{1}+R_{2}} .
$$

This means R_{1} is $\frac{1}{3}$ of the total of $R_{1}+R_{2}$.
In other words', the ratio of R_{1} to the total of $R_{1}+R_{2}$ is 1 to 3. It follows that $R_{1}+R_{2}=3 k \Omega$, since $R_{1}=1 k \Omega$.

Thus,$\quad R_{2}=2 \mathrm{k} \Omega$.
Note: Does R_{2} alter the circuit's behavior at $\omega_{0}=/ M r / s$? Because the L and C act like a short circuit at ω_{0}, R_{2} is bypassed and leaves the circuit response unaltered at ω_{0}.

Note: Finding the cutoff frequencies for this circuit is difficult owing to the R 's from the L and C in the expression for $H(j \omega)$.

