Ex:

One period, T, of a function $v(t)$ is shown above. The formula for $v(t)$ is

$$
v(t)=\left\{\begin{array}{cc}
2 \sin \left(\frac{4 \pi}{T} t\right) \mathrm{V} & 0<t<T / 4 \\
2 \mathrm{~V} & T / 4<t<3 T / 4 \\
2 \sin \left(\frac{4 \pi}{T} t\right) \mathrm{V} & 3 T / 4<t<T
\end{array}\right.
$$

Find the numerical value of the following coefficients of the Fourier series for $v(t)$: (Hint: separate the function into even and odd parts.)
a) a_{v}
b) a_{1}
c) b_{2}
d) a_{4}
sol'n: a) When calculating a_{ν} as the area of one period of $v(t)$ divided by the period, ie.,

$$
a_{\nu}=\frac{1}{T} \int_{0}^{T} v(t) d t,
$$

we observe that the areas of the sinusoidal portions cancel out.

We spread the remaining rectangle across one period, resulting in a height of $I V$. Iv $\underset{0}{\substack{\left.\frac{v}{2} \\ \hdashline t\right)}} t$

$$
\left.a_{\nu}=1 V \quad \text { (average height of } v(t)\right)
$$

b) The a_{1} coefficient formula is

$$
a_{1}=\frac{2}{T} \int_{0}^{T} v(t) \cos \left(\omega_{0} t\right) d t
$$

where $\omega_{0}=\frac{2 \pi}{T}$
Graphically, the product in the integral gives the following areas (shown by hatched (ines) when the integral is computed:

The first and last areas cancel, and we may double the first half of the center area to compute a_{1} :

$$
a_{1}=\frac{2}{T} \cdot 2 \int_{\frac{T}{4}}^{\frac{T}{2}} 2 V \cdot \cos \left(\frac{2 \pi}{T} t\right) d t
$$

or

$$
a_{1}=\left.\frac{8 V}{7} \frac{\sin \left(\frac{2 \pi}{T} t\right)}{\frac{2 \pi}{7}}\right|_{\frac{T}{4}} ^{\frac{T}{2}}
$$

or

$$
a_{1}=\frac{4}{\pi} v \cdot\left(\sin _{0}^{\pi} \pi-\sin _{1} \frac{\pi}{2}\right)
$$

or

$$
a_{1}=-\frac{4}{\pi} v
$$

c) The b_{2} coefficient formula is

$$
b_{2}=\frac{2}{T} \int_{0}^{T} v(t) \sin \left(2 \omega_{0} t\right) d t, \quad \omega_{0}=\frac{2 \pi}{T}
$$

We may determine the value of the integral graphically by finding the area under $v(t) \cdot \sin \left(2 \omega_{0} t\right)$.

The first and last areas are the same, and the middle two areas cancel.

$$
\begin{aligned}
b_{2} & =\frac{2}{T} \cdot 2 \int_{0}^{T / 4} 2 \sin \left(\frac{4 \pi}{T} t\right) \sin \left(\frac{4 \pi t}{T} t\right) d t v \\
& =\frac{8}{T} \int_{0}^{T / 4} \sin ^{2}\left(\frac{4 \pi}{T} t\right) d t v \\
& =\frac{8}{T} \int_{0}^{T / 4} \frac{1}{2}-\left.\frac{1}{2} \cos \left(\frac{8 \pi}{T} t\right) d t v\right|_{0} ^{\frac{1}{2}} \int_{0}^{\sin ^{2}} \\
& =\left.\frac{8}{T}\left(\frac{1}{2} t-\frac{1}{2} \sin \frac{8 \pi}{T} t\right)\right|_{V} ^{T / 4} \sin ^{2}=\frac{1}{2}-\frac{1}{2} \cos (2 \sin \theta) \\
& =\frac{8}{T} \cdot \frac{T}{8}-\frac{1}{2 \pi}(\sin 2 \pi-0) V \\
b_{2} & =1 V
\end{aligned}
$$

d) The a_{4} coefficient formula is

$$
a_{4}=\frac{2}{T} \int_{0}^{T} v(t) \cos \left(4 \omega_{0} t\right) d t
$$

The integral is the area under the product of $v(t)$ and $\cos \left(4 \omega_{0} t\right)$:

The areas all cancel out.

$$
a_{4}=0 \mathrm{~V}
$$

Note: The preceding results may also be obtained by breaking $v(t)$ into even and odd parts. The even part gives a_{ν} and a_{1} and a_{4}. The odd part gives $b_{2} . \quad v(t)=v_{\text {even }}(t)+v_{\text {add }}(t)$

