Ex:

a) For the above circuit, determine the transfer function $\mathrm{H}(j \omega)=\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}$.
b) Assume the circuit in problem 4, has the following input signal:

$$
v_{i}(t)=8+\sum_{k=1}^{\infty} \frac{36}{k^{2}}\left[(2 k-1) \cos \left(k \omega_{0} t\right)-2 \sin \left(k \omega_{0} t\right)\right] \mathrm{V}
$$

Note: $\omega_{0}=2 \mathrm{k} \mathrm{rad} / \mathrm{s}$ for the Fourier series.
Write the time-domain expression of the sixth harmonic (i.e., $k=6$) of $v_{\mathrm{o}}(t)$.
sol'n: The sixth harmonic of $v_{0}(t)$ arises solely from the sixth harmonic of $v_{i}(t)$ owing to the property of sinusoidal inputs producing only sinusoidal signals of the same freq quency everywhere in the circuit. Thus, we focus on $v_{i 6}(t)$:

$$
\begin{aligned}
& v_{i 6}(t)=\frac{36}{6^{2}}\left[(2(6)-1) \cos \left(6 \omega_{0} t\right)-2 \sin \left(6 \omega_{0} t\right)\right] v \\
& v_{i 6}(t)=11 \cos (12 \mathrm{kr} / 3 \cdot t)-2 \sin (12 \mathrm{kr} / \mathrm{s} t) v
\end{aligned}
$$

We find the output $v_{06}(t)$ for the circuit when $v_{i 6}(t)$ is the input. The phasor of the input signal is

$$
V_{i 6}=11+j 2
$$

We have a V-divider:

$$
V_{06}=V_{i 6} \cdot \frac{R_{2}}{R_{1}+R_{2}+j \omega L} \quad \text { where } \omega=6 \omega_{0}
$$

or

$$
V_{06}=H\left(j 6 \omega_{0}\right) V_{i 6} \text { where } H\left(j 6 \omega_{0}\right)=\frac{R_{2}}{R_{1}+R_{2}+j 6 \omega_{0} L}
$$

The impedance of L is

$$
j \omega L=j 6 \omega_{0} L=j 6 \cdot 2 \mathrm{kr} / \mathrm{s} \cdot 2 \mathrm{mH}=j 24 \Omega .
$$

Our transfer function is

$$
H\left(j 6 \omega_{0}\right)=\frac{5 \Omega}{2 \Omega+5 \Omega+j 24 \Omega}=\frac{5}{7+j 24}
$$

combining results yields the value of V_{06} :

$$
V_{06}=H\left(j 60_{0}\right) V_{i 6}=\frac{5}{7+j 24}(11+j 2) v
$$

To simplify this complex value, we rationalize:

$$
V_{06}=\frac{5\left(11+j^{2}\right)}{7+424} \cdot \frac{7-j 24}{7-j 24}=\frac{5[(77+48)-j(264-14)]}{7^{2}+24^{2}} v
$$

or

$$
\begin{aligned}
& V_{O 6}\left.=\frac{5(125}{25^{2}}-j 250\right) \mathrm{v} \\
& \text { or } \\
& V_{O 6}=1-j^{2} \mathrm{~V}
\end{aligned}
$$

Converting back to the time domain (and remembering that the inverse phasor of $-j$ is $\sin (\omega t)$, we have the time domain expression for the sixth harmonic of $v_{0}(t)$:

$$
v_{06}(t)=\cos (12 k r / s \cdot t)+2 \sin (12 k r / s \cdot t) v
$$

