Ex: \quad Show that the following identity is valid:

$$
\mathcal{L}\{t f(t)\}=-\frac{d}{d s} F(s)
$$

Sol'n: This identity is easier to prove if we start we the right side and show that it is equal to the left side.

$$
-\frac{d}{d s} F(s)=\frac{-d}{d s} \mathcal{L}\{f(t)\}=\frac{-d}{d s} \int_{0^{-}}^{\infty} f(t) e^{-s t} d t
$$

Because differentiation and integration are linear operators, and because s is not a function of t, we can exchange the order of differentiation and integration.

$$
\frac{-d}{d s} \int_{0^{-}}^{\infty} f(t) e^{-s t} d t=\int_{0^{-}}^{\infty} \frac{-d}{d s}\left[f(t) e^{-s t}\right] d t
$$

$f(t)$ acts like a constant with respect to differentiation by s, and the exponential has a simple derivative.

$$
\int_{0^{-}}^{\infty} \frac{-d}{d s}\left[f(t) e^{-s t}\right] d t=\int_{0^{-}}^{\infty}-f(t)(-t) e^{-s t} d t
$$

The minus signs cancel, and we complete the proof.

$$
\int_{0^{-}}^{\infty}-f(t)(-t) e^{-s t} d t=\int_{0^{-}}^{\infty} t f(t) e^{-s t} d t=\mathcal{L}\{t f(t)\}
$$

