Ex: Find the inverse Laplace transform for the following expression:

$$
F(s)=\frac{12 s+20}{s^{2}+5 s}
$$

Sol'n: We use partial fractions, meaning we factor the denominator into root terms and find coefficients in the numerators of terms for each root.

$$
F(s)=\frac{12 s+20}{s^{2}+5 s}=\frac{12 s+20}{s(s+5)}=\frac{A}{s}+\frac{B}{s+5}
$$

There are many ways to find A and B. One method is to put the two terms over a common denominator and match coefficients of powers of s. Another method, which we use here, is the "pole cover-up method". In this method, we multiply by a root term and then set s to the root value.

$$
A=\left.F(s) s\right|_{s=0}=\left.\frac{12 s+20}{s+5}\right|_{s=0}=\frac{20}{5}=4
$$

Note how multiplying by s caused cancellation of the s in the denominator.

$$
B=\left.F(s)(s+5)\right|_{s=-5}=\left.\frac{12 s+20}{s}\right|_{s=-5}=\frac{12(-5)+20}{-5}=\frac{-40}{-5}=8
$$

Now we have $F(s)$ is a form that is is easily inverse transformed:

$$
\begin{aligned}
& F(s)=\frac{4}{s}+\frac{8}{s+5} \\
& \mathcal{L}^{-1}\left\{\frac{4}{s}+\frac{8}{s+5}\right\}=4 u(t)+8 e^{-5 t} u(t)
\end{aligned}
$$

Note: We multiply the second term by $u(t)$ to remind ourselves that the inverse Laplace transform tells us nothing about a signal before $t=0$ since the Laplace transform integral includes only time greater than zero.

