Transform Pair: $\quad \mathcal{L}\left\{t^{n} e^{-a t}\right\}=\frac{n!}{(s+a)^{n+1}}$

Proof: We start by finding the Laplace transform of t^{n}. We may add the $e^{-a t}$ at the end, using a convenient identity. Meanwhile, we may derive the transform of t^{n} by repeatedly applying the identity for multiplication by t, starting with $f(t)=1=t^{0}=u(t)$.

$$
\mathcal{L}\{u(t)\}=\frac{1}{s}
$$

We apply the identity for multiplication by t :

$$
\mathcal{L}\{t f(t)\}=-\frac{d}{d s} F(s)
$$

In the present case, we have the following result:

$$
\mathcal{L}\{t u(t)\}=\mathcal{L}\{t\}=-\frac{d}{d s} \frac{1}{s}=\frac{1}{s^{2}}
$$

We apply the identity several more times:

$$
\mathcal{L}\{t \cdot t\}=\mathcal{L}\left\{t^{2}\right\}=-\frac{d}{d s} \frac{1}{s^{2}}=\frac{2}{s^{3}}
$$

and

$$
\mathcal{L}\left\{t \cdot t^{2}\right\}=\mathcal{L}\left\{t^{3}\right\}=-\frac{d}{d s} \frac{2}{s^{3}}=\frac{2 \cdot 3}{s^{4}}
$$

and

$$
\mathcal{L}\left\{t \cdot t^{3}\right\}=\mathcal{L}\left\{t^{4}\right\}=-\frac{d}{d s} \frac{3}{s^{4}}=\frac{2 \cdot 3 \cdot 4}{s^{5}}
$$

At this point the pattern is becoming clear:

$$
\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

Note: To complete a formal proof by induction, we may apply the multiplication-by-time identity to show the formula holds for t^{n+1} assuming that it holds for t^{n}.

To complete our proof, we apply the identity for multiplication by $e^{-a t}$:

$$
\mathcal{L}\left\{e^{-a t} f(t)\right\}=F(s+a)
$$

This yields our final result:

$$
\mathcal{L}\left\{t^{n} e^{-a t}\right\}=\frac{n!}{(s+a)^{n+1}}
$$

