Ex: \quad Find the inverse Laplace transform of $\frac{e^{-2 s}}{(s+4)^{n}}$.
Sol'n: The $e^{-2 s}$ indicates that we have a delayed signal, for which we use the delayed signal (or shifted signal) identity:

$$
\mathcal{L}\{f(t-a) u(t-a)\}=e^{-a s} F(s), \quad a>0
$$

We may apply this identity at the end of our calculations. Thus, we wish to find the inverse Laplace transform of

$$
F(s)=\frac{1}{(s+4)^{n}}
$$

We may employ the following transform pair:

$$
\mathcal{L}\left\{t^{n} e^{-a t}\right\}=\frac{n!}{(s+a)^{n+1}}
$$

There is a minor issue with the exponent being $n+1$ in the denominator, which we may resolve by using $n-1$ on the left side instead of n :

$$
\mathcal{L}\left\{t^{n-1} e^{-a t}\right\}=\frac{(n-1)!}{(s+a)^{n}}
$$

We may also divide by $(n-1)$! to obtain the precise form we need for the present situation:

$$
\mathcal{L}\left\{\frac{t^{n-1} e^{-a t}}{(n-1)!}\right\}=\frac{1}{(s+a)^{n}}
$$

For $a=4$, we obtain the following result:

$$
\mathcal{L}^{-1}\left\{\frac{1}{(s+4)^{n}}\right\}=\frac{t^{n-1} e^{-4 t}}{(n-1)!}
$$

Now we apply the delay identity with $a=2$, which means we replace t with $t-2$ wherever t appears:

$$
\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{(s+4)^{n}}\right\}=\frac{(t-2)^{n-1} e^{-a(t-2)}}{(n-1)!} u(t-2)
$$

