1.

a) Find $\mathcal{L}\{\delta(t-4) u(t-4)+t \cos (9 t)\}$.
b) Find $v(t)$ if $V(s)=\frac{16}{s^{2}+10 s+25}$.
c) Find $\lim _{t \rightarrow \infty} v(t)$ if $V(s)=\frac{10 s^{2}+4}{s^{3}+s^{2}+s}$.
d) Plot the poles and zeros of $V(s)$ in the s plane.

2.

Note: The 4 V in the $v_{g}(t)$ source is always on.
a) Write the Laplace transform, $V_{\mathrm{g}}(s)$, of $v_{\mathrm{g}}(t)$.
b) Draw the s-domain equivalent circuit, including source $V_{\mathrm{g}}(s)$, components, initial conditions for $C^{\prime} \mathrm{s}$, and terminals for $V_{\mathrm{o}}(s)$.
3. c) Write an expression for $V_{0}(s)$.
d) Apply the initial value theorem to find $\lim _{t \rightarrow 0^{+}} v_{0}(t)$.

$$
t \rightarrow 0^{+}
$$

4.

a) Write the Laplace transform $I_{\mathrm{g}}(s)$ of $i_{\mathrm{g}}(t)$.
b) Write the Laplace transform $V_{\mathrm{O}}(s)$ of $v_{\mathrm{O}}(t)$. Be sure to include the effects of initial conditions, if they are nonzero.
5. c) Write a numerical time-domain expression for $v_{0}(t)$ where $t \geq 0$.

