

-0+

 $v_0(t)$

o —

1. a) Find
$$\mathcal{L}\left\{\delta(t-4)u(t-4) + t\cos(9t)\right\}$$
.
b) Find $v(t)$ if $V(s) = \frac{16}{s^2 + 10s + 25}$.
c) Find $\lim_{t \to \infty} v(t)$ if $V(s) = \frac{10s^2 + 4}{s^3 + s^2 + s}$.
d) Plot the poles and zeros of $V(s)$ in the *s* plane.
 $V(s) = \frac{s^2 - s - 6}{s^3 + 6s^2 + 34s}$
Im
 \downarrow
Re
2.
 $C_1 = 125 \ \mu\text{F}$
 $v_g(t) = 4\text{V} + tu(t)\text{V}$
 \downarrow
 $C_2 = 125 \ \mu\text{F}$
 $R = 240 \ \Omega$

Note: The 4 V in the $v_g(t)$ source is always on.

- a) Write the Laplace transform, $V_g(s)$, of $v_g(t)$.
- b) Draw the *s*-domain equivalent circuit, including source $V_g(s)$, components, initial conditions for *C*'s, and terminals for $V_o(s)$.

3. c) Write an expression for
$$V_0(s)$$
.

d) Apply the initial value theorem to find $\lim_{t \to 0^+} v_0(t)$.

$$i_g(t) = \begin{cases} 3 \text{ A } t < 0 \\ 0 \text{ A } t \ge 0 \end{cases}$$

$$C = 5 \text{ mF}$$

$$L = 500 \text{ mH}$$

$$v_o(t)$$

- a) Write the Laplace transform $I_g(s)$ of $i_g(t)$.
- b) Write the Laplace transform $V_0(s)$ of $v_0(t)$. Be sure to include the effects of initial conditions, if they are nonzero.
- 5. c) Write a numerical time-domain expression for $v_0(t)$ where $t \ge 0$.