Ex: a) Find $\mathcal{L}\{\delta(t-4) u(t-4)+t \cos (9 t)\}$.
b) Find $v(t)$ if $V(s)=\frac{16}{s^{2}+10 s+25}$.
c) Find $\lim _{t \rightarrow \infty} v(t)$ if $V(s)=\frac{10 s^{2}+4}{s^{3}+s^{2}+s}$.
d) Plot the poles and zeros of $V(s)$ in the s plane.

$$
V(s)=\frac{s^{2}-s-6}{s^{3}+6 s^{2}+34 s}
$$

Sol'n: a) We use the delay transform for the first part of the expression and the identity for multiplication by t for the second part of the expression:

The delay identity is as follows:

$$
\mathcal{L}\{f(t-a) u(t-a)\}=e^{-a s} \mathcal{L}\{f(t)\}
$$

Here, we have the following result:

$$
\mathcal{L}\{\delta(t-4) u(t-4)\}=e^{-4 s} \mathcal{L}\{\delta(t)\}=e^{-4 s}
$$

Note: The multiplication by the delayed step function actually has no effect on the delayed delta function.

Next, we apply the following identity for multiplication by t :

$$
\mathcal{L}\{t f(t)\}=-\frac{d}{d s} F(s)
$$

Here, we have the following result:

$$
\mathcal{L}\{t \cos (9 t)\}=-\frac{d}{d s} \frac{s}{s^{2}+9^{2}}=\frac{-1}{s^{2}+9^{2}}+\frac{s(2 s)}{\left[s^{2}+9^{2}\right]^{2}}
$$

We sum the results for the final answer:

$$
\mathcal{L}\{\delta(t-4) u(t-4)+t \cos (9 t)\}=e^{-4 s}-\frac{1}{s^{2}+9^{2}}+\frac{2 s^{2}}{\left[s^{2}+9^{2}\right]^{2}}
$$

b) We first factor the denominator.

$$
s^{2}+10 s+25=(s+5)^{2}
$$

We can take the inverse transform immediately for this form of denominator:

$$
v(t)=\mathcal{L}^{-1}\left\{\frac{16}{(s+5)^{2}}\right\}=\left[16 t e^{-5 t}\right] u(t)
$$

Note: We multiply by $u(t)$ to suggest that nothing is known about the signal before time zero.
c) We use the initial value theorem:

$$
\lim _{t \rightarrow \infty} v(t)=\lim _{s \rightarrow 0} s V(s)
$$

or

$$
\lim _{t \rightarrow \infty} v(t)=\lim _{s \rightarrow 0} s \frac{10 s^{2}+4}{s^{3}+s^{2}+s}
$$

We cancel a factor of s from the top and bottom and substitute $s=0$.

$$
\lim _{t \rightarrow \infty} v(t)=\lim _{s \rightarrow 0} \frac{10 s^{2}+4}{s^{2}+s+1}=4
$$

d) The poles are roots of the denominator, and the zeros are the roots of the numerator.

$$
V(s)=\frac{s^{2}-s-6}{s^{3}+6 s^{2}+34 s}=\frac{(s-3)(s+2)}{s(s+3+j 5)(s+3-j 5)}
$$

The zeros are 3 and -2 . The poles are $0,-3-j 5,-3+j 5$.
We denote the poles with X 's and the zeros with O's in the complex s-plane:

