Ex:

Note: The 4 V in the $v_{g}(t)$ source is always on.
a) Write the Laplace transform, $V_{\mathrm{g}}(s)$, of $v_{\mathrm{g}}(t)$.
b) Draw the s-domain equivalent circuit, including source $V_{\mathrm{g}}(s)$, components, initial conditions for $C^{\prime} \mathrm{s}$, and terminals for $V_{\mathrm{o}}(s)$.
c) Write an expression for $V_{\mathrm{O}}(s)$.
d) Apply the initial value theorem to find $\lim _{t \rightarrow 0^{+}} v_{\mathrm{O}}(t)$.

SoL'n: a) We consider only the value of $v_{\mathrm{g}}(t)$ for $t>0$ when finding the Laplace transform:

$$
\mathcal{L}\left\{v_{g}(t)\right\}=\mathcal{L}\{4+t u(t)\} \mathrm{V}=\frac{4}{s}+\frac{1}{s^{2}} \mathrm{~V}
$$

b) To find initial conditions, we assume that, since the circuit input is a constant 4 V , the circuit has reached a constant state where derivatives of voltages and currents are zero. Thus, we treat the capacitors as open circuits. We then find the energy variables, $v_{\mathrm{C} 1}\left(t=0^{+}\right)$and $v_{\mathrm{C} 2}\left(t=0^{+}\right)$:

The R discharges C_{2} so all of the source voltage appears across C_{1} :

$$
\begin{aligned}
& v_{C 1}\left(0^{-}\right)=4 \mathrm{~V} \\
& v_{C 2}\left(0^{-}\right)=0 \mathrm{~V}
\end{aligned}
$$

We have a choice of whether to use a current source or a voltage source for the initial conditions on C_{1}. (We may omit the initial condition source for C_{2}, since the initial value is zero.) The choice made here is to use a series voltage sourse. Note that the voltage source corresponds to a step function in the time domain that produces voltage $v_{C 1}\left(0^{-}\right)$in the desired direction.

c) We sum the voltage sources and then convert the voltage sources, C_{1}, and C_{2} to a Thevenin equivalent form.

$$
\begin{aligned}
& V_{g}(s)\left.=\frac{1}{2} \frac{4}{s}+\frac{1}{s^{2}}-\frac{4}{s}\right] \text { 年 } \\
&= \frac{1}{2 s^{2}} \\
& V_{\mathrm{O}}(s)=\frac{1}{2 s_{1}^{2}} \frac{1}{s C_{2}}=\frac{4 \mathrm{k}}{\mathrm{~s}} \\
& 240+\frac{4 \mathrm{k}}{\mathrm{~s}} \frac{240}{s(480 s+8 \mathrm{k})}
\end{aligned}
$$

d) The initial value theorem statement is as follows:

$$
\lim _{t \rightarrow 0^{+}} v_{\mathrm{O}}(t)=\lim _{s \rightarrow \infty} s V_{\mathrm{O}}(s)
$$

or, in this case,

$$
\lim _{t \rightarrow 0^{+}} v_{\mathrm{o}}(t)=\lim _{s \rightarrow \infty} s\left(\frac{240}{s(480 s+8 \mathrm{k})}\right)=\lim _{s \rightarrow \infty} \frac{240 s}{480 s^{2}}=0
$$

The highest power of s in the denominator is larger than the highest power of s in the numerator. Thus, the value is zero.

This result makes sense, since C_{2} has zero volts across it at time $t=0^{+}$, and the change in the input signal is zero at time $t=0^{+}$.

