Ex:

a) Calculate the value of rms voltage, $\mathbf{I}_{\mathrm{rms}}$, flowing in the circuit to the right of terminals \mathbf{a} and \mathbf{b}.
b) Calculate the complex power, S, for the circuit to the right of terminals \mathbf{a} and \mathbf{b}. Include appropriate units for S.

Sol'N: a) We use the current divider formula to find $\mathbf{I}_{\mathrm{rms}}$:

$$
\mathbf{I}_{\mathrm{rms}}=\mathbf{I}_{\mathrm{g}} \frac{j 10 \mathrm{k}-j 30 \mathrm{k} \Omega}{j 10 \mathrm{k}-j 30 \mathrm{k}+10 \mathrm{k}+j 20 \mathrm{k} \Omega}=30 \angle 60^{\circ} \mathrm{mA}(\mathrm{rms}) \frac{-j 20 \mathrm{k}}{10 \mathrm{k}}
$$

or

$$
\mathbf{I}_{\mathrm{rms}}=30 \angle 60^{\circ} \mathrm{mA}(\mathrm{rms})(-j 2)=30 \angle 60^{\circ} \cdot 2 \angle-90^{\circ} \mathrm{mA}(\mathrm{rms})
$$

or

$$
\mathbf{I}_{\mathrm{rms}}=60 \angle-30^{\circ} \mathrm{mA}(\mathrm{rms})
$$

b) We can use the following convenient formula for S :

$$
S=\left|\mathbf{I}_{\mathrm{rms}}\right|^{2} z=[60 \mathrm{~mA}(\mathrm{rms})]^{2}(10 \mathrm{k}+j 20 \mathrm{k} \Omega)
$$

or

$$
S=3.6 \mathrm{k} \mathrm{~mm} \cdot(10 \mathrm{k}+j 20 \mathrm{k} \Omega)=36+j 72 \mathrm{VA}
$$

