Ex:

a) Calculate the numerical value of phasor current, \mathbf{I}_{2}, flowing upward in the right coil of the transformer in the above circuit. Note: the transformer is linear.

b) Given $\mathbf{V}_{1}=150 \angle 0^{\circ} \mathrm{V}$ find the turns ratio, $\mathrm{N}_{1} / \mathrm{N}_{2}$, for the transformer in the above circuit. Note: the transformer is ideal.
sol'n: a) We first use reflected impedance to find \mathbb{I}_{1} (current in primary). Then we use the transformer eqn's to find \mathbb{I}_{2}.

Reflected $z: \quad z_{r}=\frac{(\omega M)^{2}}{z_{\sec } \text { tot }}=\frac{20^{2} \Omega^{2}}{j 10-j 20 \Omega}$

$$
z_{r}=\frac{400}{-j 10}=j 40 \Omega
$$

Model of primary:

$$
\begin{aligned}
\mathbb{I}_{1} & =\frac{V_{s}}{j \omega L_{1}+z_{r}}=\frac{160 \angle 0^{\circ} \mathrm{V}}{j 80+j 40 \Omega} \\
\text { or } \quad \mathbb{I}_{1} & =-j \frac{4}{3} \mathrm{~A} \text { or } \frac{4}{3} \angle-90^{\circ} \mathrm{A}
\end{aligned}
$$

Transformer eq'ns:

$$
\begin{aligned}
& V_{1}=\left(R_{1}+j \omega L_{1}\right) \mathbb{I}_{1}-j \omega M \mathbb{I}_{2} \\
& V_{2}=+j \omega M \mathbb{I}_{1}-\left(R_{2}+j \omega L_{2}\right) \mathbb{I}_{2}
\end{aligned}
$$

where $R_{1}=0 \Omega, R_{2}=0 \Omega$.
We observe that $V_{1}=V_{5}$, and we can use the first transformer eg'n to find \mathbb{I}_{2}.

$$
\begin{aligned}
& V_{S}=j \omega L_{1} \mathbb{I}_{1}-j \omega M \mathbb{I}_{2} \\
& \text { or } \\
& \text { or } \mathbb{I}_{2}=\frac{j \omega L_{1} \mathbb{I}_{1}-V_{S}}{j \omega M} \\
& \text { or } \mathbb{I}_{2}=\frac{j 80 \Omega\left(-j \frac{4}{3}\right) A}{j^{20 \Omega}-160 \angle 0^{\circ} V} \\
& I_{2}=\frac{\frac{320}{3}-\frac{480}{3}}{j 20 \Omega} \\
& \text { or }_{2}=-\frac{160}{j 60} A=j \frac{8}{3} A
\end{aligned}
$$

b) We replace the transformer with the reflected impedance $z_{r}=\left(\frac{N_{1}}{N_{2}}\right) z_{L}$
where $z_{L}=-j 30 \Omega$:

$$
\begin{gathered}
V_{s}= \pm \\
100 \angle 0^{\circ} \mathrm{V}\left[\begin{array}{c}
+40 \Omega\} \\
V_{1} \\
-
\end{array}\right]=\left(\frac{N_{1}}{N_{2}}\right)^{2}(-j 30 \Omega)
\end{gathered}
$$

Using a voltage-divider, we have

$$
V_{1}=V_{s} \frac{z_{r}}{j 40 \Omega+z_{r}}
$$

or

$$
V_{1}\left(j^{40 \Omega}+z_{r}\right)=V_{s} z_{r}
$$

or

$$
V_{1}(j 40 \Omega)=\left(V_{s}-V_{1}\right) z_{r}
$$

or

$$
z_{r}=\frac{V_{1}(j 40 \Omega)}{V_{5}-V_{1}}=\frac{150(j 40 \Omega)}{100-150}=-j 120 \Omega
$$

But $z_{r}=\left(N_{1} / N_{2}\right)(-j 302)$, so $\left(N_{1} / N_{2}\right)^{2}=4, \frac{N_{1}}{N_{2}}=2$.

