Ex:

After being closed for a long time, the switch opens at $t=0$.
The above circuit is an analog "one-shot" circuit that, once charged, produces a short, rounded current-pulse resembling the current that flows in a synapse of a neuron. The circuit is critically damped.
a) Find the value of R that makes the circuit critically-damped.
b) Using the R value from (a), find a numerical expression for the inductor current, $i(t)$, for $t>0$.
sol'n: a) After $t=0$, the switch is open, and the circuit becomes a series RLC with resistance $R+R_{s}$.

Characteristic roots are (always)

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}
$$

where $\alpha=\frac{R}{2 L}$ for series RLC

$$
\omega_{0}^{2}=\frac{1}{L C} \text { for series or parallel RLC }
$$

For critically-damped, we have

$$
s_{1}=s_{2} \Rightarrow \alpha=\omega_{0} \text { or } \alpha^{2}=\omega_{0}^{2}
$$

or

$$
\left(\frac{R_{e q}}{2 L}\right)^{2}=\frac{1}{L C} \text { with } R_{e q}=R_{y}+R
$$

or

$$
\operatorname{Reg}^{2}=\frac{z^{2} L}{c}
$$

or

$$
R_{e q}=2 \sqrt{\frac{L}{C}}=2 \cdot \sqrt{\frac{\theta 0 \mu}{5 \mu}} \Omega=8 \Omega
$$

$$
1 \Omega+R=8 \Omega
$$

or

$$
R=7 \Omega
$$

b) We use the general form of sol'n for critically damped:

$$
i(t>0)=A_{1} e^{s t}+A_{2} t e^{s t}+A_{3}
$$

We find A_{3} from $i(t \rightarrow \infty)$.
$t \rightarrow \infty: \quad C=$ open, $L=$ wire, switch open

Since there is no phr source,

$$
A_{3}=i(t \rightarrow \infty)=0 \mathrm{~A}
$$

We find A_{1} and A_{2} from initial cond's: $t=O^{-}=C=$ open, $L=$ wire, switch closed

$i_{L}\left(0^{-}\right)=O A$ (no path for current)
$v_{C}\left(\mathrm{O}^{-}\right)=40 \mathrm{~V}$ since no current in R_{S} means on across R_{S} and v-loop on left must sum to zero volts',

We find $i\left(0^{+}\right)$and $\left.\frac{d i(t)}{d t}\right|_{t=0^{+}}$.

$$
\begin{aligned}
& t=0^{+}: \quad i_{L}\left(O^{+}\right)=i_{L}\left(O^{-}\right)=O A, \quad v_{C}\left(O^{+}\right)=v_{C}\left(0^{-}\right)=40 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& i\left(0^{+}\right)=i_{L}\left(0^{+}\right)=O A
\end{aligned}
$$

For the symbolic sol'n we have

$$
i\left(0^{+}\right)=A_{1}
$$

Equating the circuit value and symbolic sol'n form, we have $A_{1}=0 \mathrm{~A}$.

For the derivative, we have

$$
\left.\frac{d i(t)}{d t}\right|_{t=0^{+}}=\frac{v_{L}\left(0^{+}\right)}{L}
$$

Using a v-loop, we have $v_{L}\left(0^{+}\right)=40 \mathrm{~V}$.
For the symbolic sol'n we have

$$
\left.\frac{d i(t)}{d t}\right|_{t=0^{+}}=A_{1}^{0} s+A_{2}=A_{2}=\frac{40 \mathrm{~V}}{80 \mu}
$$

Thus, $i(t>0)=500 \mathrm{Kt} \mathrm{e}^{s t} \mathrm{~A}$
where $s=\frac{R_{\text {eg }}}{2 L}=\frac{8}{2(80 \mu)}=50 \mathrm{Kr} / \mathrm{s}$.

