

1.

EEE 2260

F 11

The current source in the above circuit is off for t < 0.

Find a symbolic expression for the Laplace-transformed output, $V_0(s)$, in terms of not more than R_1 , R_2 , L, C, and values of sources or constants.

2. Choose a numerical value for R_1 for the circuit in problem 1 to make

$$v_1(t) = v_m - v_m e^{-\alpha t} \left[\cos(\beta t) + \frac{1}{2} \sin(\beta t) \right]$$

where v_m , α , and β are real-valued constants.

Hint: *C* behaves as though it is in parallel with *L* and R_1 .

Find the value of load impedance, z_L , that makes $z_{L\Delta} = 24.6 - j36.9 \Omega$. Note that $z_{L\Delta}$ is the equivalent impedance of the entire circuit.

4.

For the above 3-phase balanced circuit, find the numerical value of the phasor current \mathbf{I}_{CA} .

5. For the above 3-phase balanced circuit, find the numerical value of the phasor voltage $V_{b'a'}$.