1.

The current source in the above circuit is off for $t<0$.
Find a symbolic expression for the Laplace-transformed output, $\mathbf{V}_{\mathrm{o}}(s)$, in terms of not more than R_{1}, R_{2}, L, C, and values of sources or constants.
2. Choose a numerical value for R_{1} for the circuit in problem 1 to make

$$
v_{1}(t)=v_{m}-v_{m} e^{-\alpha t}\left[\cos (\beta t)+\frac{1}{2} \sin (\beta t)\right]
$$

where v_{m}, α, and β are real-valued constants.
Hint: C behaves as though it is in parallel with L and R_{1}.
3.

Find the value of load impedance, z_{L}, that makes $z_{\mathrm{L} \Delta}=24.6-j 36.9 \Omega$. Note that $z_{\mathrm{L} \Delta}$ is the equivalent impedance of the entire circuit.
4.

For the above 3-phase balanced circuit, find the numerical value of the phasor current $\mathbf{I}_{\text {CA }}$.
5. For the above 3-phase balanced circuit, find the numerical value of the phasor voltage $\mathbf{V}_{\text {b'a' }}$.

